
Homework #1
ME 471/571

All of your work for this assignment should be turned in using a Jupyter notebook. Turn in a single
notebook (the .ipynb file) for all problems. Be sure all of your results are visible, because I will not re-run
your notebook. You may also turn in a PDF version of the notebook, but these don’t usually look as nice
as the notebook itself.

1. (Welford’s Algorithm (serial)). Assume you have an array of numbers x = (x1, x2, . . . , xn). For-
mulas for the mean, sample variance and standard deviation are given by

x̄n ≡
1

n

n∑
i=1

xi, (Mean)

S2 ≡ 1

n− 1

n∑
i=1

(xi − x̄n)2, (Sample variance)

S ≡

√√√√ 1

n− 1

n∑
i=1

(xi − x̄n)2, (Standard deviation)

The goal of this problem is to develop a serial, single pass algorithm for computing the above statistics.

(a) Show analytically that the mean can be incrementally updated using the formula

x̄n = x̄n−1 +
xn − x̄n−1

n

(b) Define

Mn ≡
n∑

i=1

(xi − x̄n)2

Show analytically that Mn can be incrementally updated using

Mn = Mn−1 + (xn − x̄n)(xn − x̄n−1)

(c) Use the above ideas to write a serial program that computes the mean, sample variance and
standard deviation in a single-pass. The resulting algorithm is essentially the serial Welford’s
Algorithm for computing these statistics.

(d) How close to the value 1/
√

12 can you get for the standard deviation of a set of uniformly
distributed numbers? Show, either in a table or a plot, the standard deviation of your array
x verses size of the array.

Turn in either hand-written work (or LATEX) for the first two questions. For the serial algorithm, turn
in a Jupyter notebook. Verify that you are getting the correct results by comparing your statistics to
the NumPy results using np.mean(x), np.var(x) and np.std(x). Show that your statistics compare
to the NumPy’s results to essentially machine precision. Generate your data set using the random
number generator used in class.

2. (Parallel Welford’s Algorithm). Suppose we have two sets of data XA and XB with means X̄A

and X̄B , squared sums MA, MB and counts NA and NB . These quantities can be combined to form
aggregate statistics X̄X on the combined data set X with count NX .

(a) Show that

X̄X = X̄A + (X̄B − X̄A)
NB

NX
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(b) Use Problem 2a to show that the related expression

X̄X = X̄B + (X̄A − X̄B)
NA

NX

also holds.

(c) Show that

MX = MA +MB + (X̄B − X̄A)2
NANB

NX

(d) Combine the above ideas to write a single pass, parallel version of Welford’s Algorithm for com-
puting the mean, sample variance and standard deviation.

Turn in either hand-written work (or LATEX) for the first two questions. For the parallel algorithm,
turn in a Jupyter notebook for two different systems (your laptop plus one other system). For each
notebook, you should also

• Verify that you are getting the correct results by comparing your statistics to the NumPy results.

• Use ’timeit’ to get timing results

• Display your timing results using Pandas

• Create a plot showing strong scaling results

• Create a plots showing efficiency

Generate your data set using the random number generator used in class.

3. (Approximate π) Use a Monte-Carlo method to approximate the value of π. The algorithm is as
follows.

• Generate a sequence of N random pairs of numbers (xi, yi) ∈ [−1, 1]× [−1, 1]. Your N should be
as large as possible, N ∼ 106.

• Count the number of values K in the sequence which are in the circle of radius 1, centered at the
origin.

• The ratio of the number of pairs in the circle to N should approach the ratio of the area of the
circle to the area of the enclosing box. Use this to approximate π.

Run this on a single processor for a sequence of N values and report the value and timing results.
Then, run this using N points on p processors, gathering the results and reporting the timing and
your approximation. You should be able to show that by using more processors, you can get a better
approximation for essentially the same total time. Create a weak scaling plot.

There are two ways to do this problem. You can either

(a) Create a single large array in the parent process and distribute it to child processes (as we have
done in class).

(b) Let each process generate its own random numbers. To do this, you will need to seed each process
with a distinct seed to ensure that you get truly random numbers.

For this problem, use the multiprocessing function ”Pool”.

4. (Trapezoidal rule ) Approximate the following definite integral using the Trapezoidal Rule. Your
code should run on 1,2,4, and 8 processors.

I =

∫ 1

−1

(x− 1)2e−x2

dx
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(a) Use Wolfram Alpha (www.wolframalpha.com) to find the exact expression for definite integral
above. The correct expression will involve e, π, and the function erf(x).

(b) Verify that your code is correct by running it on a sequence of intervals N = 2p, for p =
10, 11, 12, . . . , 28. Verify that your results are correct by showing numerical convergence, and
show performance results by showing plots of strong and weak scaling and efficiency. You may
use the notebooks on the course website to get started with this.

Use the multiprocessing module and a Pool of workers. Does the scaling improve when you don’t have
to pass data to each subprocess?
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