
Homework #2
ME 471/571

All of your work for this assignment should be turned in using Jupyter Notebooks. Please submit the an
HTML version as well as the original notebook.

1. (Trapezoidal rule - using MPI ) Approximate the following definite integral using the Trapezoidal
Rule. Your code should run on 1,2,4, and 8 processors.

I =

∫ 1

−1
(x− 1)2e−x

2

dx

(a) Use Wolfram Alpha (www.wolframalpha.com) to find the exact expression for definite integral
above. The correct expression will involve e, π, and the function erf(x).

(b) Verify that your code is correct by running it on a sequence of intervals N = 2p, for p =
10, 11, 12, . . . , 28. Verify that your results are correct by showing numerical convergence, and
show performance results by showing plots of strong and weak scaling and efficiency. You may
use the notebooks on the course website to get started with this.

Your code should be written in C and use the MPI functions we have learned in class including
MPI Bcast to broadcast details of the domain, i.e. domain endpoints and N, and MPI Reduce to collect
the sums from each processor.

2. (Integral equation) You have probably learned that a standard approach to solving the second order
differential equation

u′′(x) = f(x) (1)

with appropriate boundary conditions for a given function f(x) is to subdivide the domain into N
intervals of width h, and then, using a finite difference discretization, construct and solve a linear
system Au = f . The advantage of this approach is that the matrix A is tridiagonal matrix and so
the linear system can solved very efficiently (using, for example, the Thomas Algorithm). The chief
disadvantage of the finite difference approach is that ill-conditioning in the matrix A eventually leads to
round-off error which swamps the truncation error in the discretization, making the solution unusable
for very large N . Also, it isn’t obvious how to parallelize Gaussian elimination.

Below, we will use a different approach to solving the above differential equation which parallelizes in
an obvious way, and which solves the round-off error problem.

We avoid the ill-conditioning by using an explicit formula for the solution to (1). Over the interval
[0, 1], the exact solution to (1) can be written in terms of two integrals as

u(x) =

(
a−

∫ x

0

ξf(ξ) dξ

)
(1 − x) +

(
b+

∫ 1

x

(ξ − 1)f(ξ) dξ

)
x (2)

where u(0) = a and u(1) = b are the prescribed boundary conditions. This method also parallelizes in
an obvious way, as we saw in Problem 1.

For this problem, Use the trapezoidal rule to numerically evaluate (2) on a subdivided mesh with
N = 2p subintervals. Choose a range of p large enough to see good scaling results. Your code should
run on 1,2,4,8 and 16 processors. Set f(x) = −(2π)2 sin(2πx) and a = b = 0.

(a) (Check the solution) Differentiate (2) twice to convince yourself that (2) is an exact solution
to (1). You do not need to turn this in, but you should be convinced before you move to the next
problem.

1



(b) (Verify.) For a choice of N , plot solution you get evaluating (2) using the Trapezoidal method
along with an exact solution on the same graph. Plot the error for several values of N to show
that your solution is converging to the true solution.

(c) (Scaling results) Show weak scaling, strong scaling and efficiency results for this approach to
solving the second order differential equation.

(d) (Simpson’s Rule) Develop a fourth order solver by using Simpson’s rule to evaluate the integral
equation. How does the scaling for the higher order integral compare to the lower order method?

(e) (Difference matrix.) Compare the error that you get from solving the integral equation with
the error you get from solving the Ax = b problem. You should see that the error for the integral
solution decreases even for very large N , unlike the solution resulting from inverting the matrix
A.

Note : This is not a parallel question, but more a question about numerics.

(f) (Discussion.) Please discuss what you see as the potential pros and cons of using this integral
approach for high performance computing as opposed to inverting the matrix A. What are the
parallel implications of solving the integral equation in parallel?

2


