Practice # 2

Let $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \ldots, \mathbf{u}_m$ be a set of vectors in \mathbb{R}^n . The span of this set is denoted

$$\operatorname{span}\left\{\mathbf{u}_{1},\mathbf{u}_{2},\ldots,\mathbf{u}_{m}\right\}$$
(1)

and is defined as the set of all possible linear combinations

$$x_1\mathbf{u}_1 + x_2\mathbf{u}_2 + x_3\mathbf{u}_3 + \ldots + x_m\mathbf{u}_m. \tag{2}$$

for any real numbers x_1, x_2, \ldots, x_m .

How do you determine if a set of m vectors $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_m\}$ spans \mathcal{R}^n ?

- The vectors \mathbf{u}_i must be in \mathcal{R}^n . That is, each vector must have *n* components.
- There must be at least n vectors in the set, or $m \ge n$.
- The echelon form of the matrix with columns formed from the *m* vectors must have *pivot in every row*.

In each of the following examples, use the checklist above to determine if the following sets span the Euclidean space of the given dimension. Provide a justification for your reasoning.

1. Does
$$\left\{ \begin{bmatrix} -1\\0\\0 \end{bmatrix}, \begin{bmatrix} 2\\1\\0 \end{bmatrix} \right\}$$
 span R^2 ?

2. Is the following true or false? Why or why not?

$$\operatorname{span}\left\{ \begin{bmatrix} -4\\1 \end{bmatrix} \right\} = R^2 \tag{3}$$

- 3. Do the vectors $\begin{bmatrix} -1\\ 2 \end{bmatrix}, \begin{bmatrix} 2\\ 7 \end{bmatrix}, \begin{bmatrix} 0\\ 1 \end{bmatrix}, \begin{bmatrix} 5\\ 2 \end{bmatrix}$ span R^2 ?
- 4. Another way to describe **span** is to say that a set of vectors $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \ldots, \mathbf{u}_m$ spans \mathcal{R}^n if and only if the vector equation

$$x_1\mathbf{u}_1 + x_2\mathbf{u}_2 + x_3\mathbf{u}_3 + \ldots + x_m\mathbf{u}_m = \mathbf{b}$$

$$\tag{4}$$

has a solution for every vector $\mathbf{b} \in \mathcal{R}^n$. Show that the vectors $\begin{bmatrix} -2\\1 \end{bmatrix}, \begin{bmatrix} 1\\3 \end{bmatrix}$ and $\begin{bmatrix} 0\\1 \end{bmatrix}$ span \mathbb{R}^2 by showing that the following vector equation can be solved for any b_1, b_2 .

$$x_1 \begin{bmatrix} -2\\1 \end{bmatrix} + x_2 \begin{bmatrix} 1\\3 \end{bmatrix} + x_3 \begin{bmatrix} 0\\1 \end{bmatrix} = \begin{bmatrix} b_1\\b_2 \end{bmatrix}$$
(5)

5. The fertilizer company has two kinds of fertilizer,

$$\mathbf{v} = \begin{bmatrix} 29\\3\\4 \end{bmatrix} \quad \text{and} \quad \mathbf{p} = \begin{bmatrix} 18\\25\\6 \end{bmatrix}, \tag{6}$$

where each component represents pounds of nitrogen, phosphoric acid and potash, respectively, per 100 lb bag. Can the company produce any possible mixture by combining bags of \mathbf{v} and bags of \mathbf{b} ? Justify your answer using the language of linear algebra, including the term "span".

6. Do the columns of the matrix A span \mathbb{R}^3 ?

$$A = \begin{bmatrix} 1 & 3 & -1 \\ -1 & -2 & 3 \\ 0 & 2 & 5 \end{bmatrix}$$
(7)

7. Use WolframAlpha to determine if the claimed equality is true.

$$\operatorname{span}\left\{ \begin{bmatrix} 4\\0\\2\\3\end{bmatrix}, \begin{bmatrix} 7\\-4\\6\\7\end{bmatrix}, \begin{bmatrix} 1\\3\\-2\\1\end{bmatrix}, \begin{bmatrix} 3\\2\\0\\2\end{bmatrix} \right\} = \mathcal{R}^4$$
(8)