Practice \# 2

Let $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{m}$ be a set of vectors in R^{n}. The span of this set is denoted

$$
\begin{equation*}
\operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{m}\right\} \tag{1}
\end{equation*}
$$

and is defined as the set of all possible linear combinations

$$
\begin{equation*}
x_{1} \mathbf{u}_{1}+x_{2} \mathbf{u}_{2}+x_{3} \mathbf{u}_{3}+\ldots+x_{m} \mathbf{u}_{m} \tag{2}
\end{equation*}
$$

for any real numbers $x_{1}, x_{2}, \ldots, x_{m}$.
How do you determine if a set of m vectors $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{m}\right\}$ spans $\mathcal{R}^{n} ?$

- The vectors \mathbf{u}_{j} must be in \mathcal{R}^{n}. That is, each vector must have n components.
- There must be at least n vectors in the set, or $m \geq n$.
- The echelon form of the matrix with columns formed from the m vectors must have pivot in every row.

In each of the following examples, use the checklist above to determine if the following sets span the Euclidean space of the given dimension. Provide a justification for your reasoning.

1. Does $\left\{\left[\begin{array}{r}-1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]\right\} \operatorname{span} R^{2} ?$
2. Is the following true or false? Why or why not?

$$
\operatorname{span}\left\{\left[\begin{array}{r}
-4 \tag{3}\\
1
\end{array}\right]\right\}=R^{2}
$$

3. Do the vectors $\left[\begin{array}{r}-1 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 7\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}5 \\ 2\end{array}\right] \operatorname{span} R^{2} ?$
4. Another way to describe span is to say that a set of vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{m}$ spans \mathcal{R}^{n} if and only if the vector equation

$$
\begin{equation*}
x_{1} \mathbf{u}_{1}+x_{2} \mathbf{u}_{2}+x_{3} \mathbf{u}_{3}+\ldots+x_{m} \mathbf{u}_{m}=\mathbf{b} \tag{4}
\end{equation*}
$$

has a solution for every vector $\mathbf{b} \in \mathcal{R}^{n}$. Show that the vectors $\left[\begin{array}{r}-2 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 3\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ span R^{2} by showing that the following vector equation can be solved for any b_{1}, b_{2}.

$$
x_{1}\left[\begin{array}{r}
-2 \tag{5}\\
1
\end{array}\right]+x_{2}\left[\begin{array}{l}
1 \\
3
\end{array}\right]+x_{3}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]
$$

5. The fertilizer company has two kinds of fertilizer,

$$
\mathbf{v}=\left[\begin{array}{r}
29 \tag{6}\\
3 \\
4
\end{array}\right] \quad \text { and } \quad \mathbf{p}=\left[\begin{array}{r}
18 \\
25 \\
6
\end{array}\right]
$$

where each component represents pounds of nitrogen, phosphoric acid and potash, respectively, per 100 lb bag. Can the company produce any possible mixture by combining bags of \mathbf{v} and bags of \mathbf{b} ? Justify your answer using the language of linear algebra, including the term "span".
6. Do the columns of the matrix A span \mathbf{R}^{3} ?

$$
A=\left[\begin{array}{rrr}
1 & 3 & -1 \tag{7}\\
-1 & -2 & 3 \\
0 & 2 & 5
\end{array}\right]
$$

7. Use WolframAlpha to determine if the claimed equality is true.

$$
\operatorname{span}\left\{\left[\begin{array}{l}
4 \tag{8}\\
0 \\
2 \\
3
\end{array}\right],\left[\begin{array}{r}
7 \\
-4 \\
6 \\
7
\end{array}\right],\left[\begin{array}{r}
1 \\
3 \\
-2 \\
1
\end{array}\right],\left[\begin{array}{l}
3 \\
2 \\
0 \\
2
\end{array}\right]\right\}=\mathcal{R}^{4}
$$

