Practice \#3 - Span and Linear Independence

1. Consider the following set of vectors.

$$
\left\{\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right],\left[\begin{array}{r}
3 \\
4 \\
-1
\end{array}\right],\left[\begin{array}{r}
4 \\
6 \\
-6
\end{array}\right],\left[\begin{array}{l}
3 \\
0 \\
1
\end{array}\right]\right\}
$$

(a) Verify that the set spans \mathcal{R}^{3} by checking each of the three criteria needed to determine whether a set of vectors spans \mathcal{R}^{3}.
i. Criteria 1:
ii. Criteria 2:
iii. Criteria 3:
(b) How many vectors can you remove from the set and still guarantee that the set spans \mathcal{R}^{3} ?
(c) Which vectors would you remove so the remaining vectors still span \mathcal{R}^{3}. Hint: Row-reduce the matrix whose columns are the vectors in the set. Which columns can you safely remove and still guarantee that

$$
\begin{equation*}
x_{1} \mathbf{u}_{1}+x_{2} \mathbf{u}_{2}+x_{3} \mathbf{u}_{3}+\ldots+x_{m} \mathbf{u}_{m}=\mathbf{b} \tag{1}
\end{equation*}
$$

has a solution for every \mathbf{b} ?
2. A set of vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{m}$ spans \mathcal{R}^{n} if and only if the vector equation

$$
\begin{equation*}
x_{1} \mathbf{u}_{1}+x_{2} \mathbf{u}_{2}+x_{3} \mathbf{u}_{3}+\ldots+x_{m} \mathbf{u}_{m}=\mathbf{b} \tag{2}
\end{equation*}
$$

has a solution for every vector $\mathbf{b} \in \mathcal{R}^{n}$.

- This definition allows for more than one possible solution. Why?
- Formulate a strategy for removing vectors, if necessary, so that the solution is unique.

3. Suppose you are given a set of vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots \mathbf{u}_{m}$. Define a criteria under which the solution to

$$
\begin{equation*}
x_{1} \mathbf{u}_{1}+x_{2} \mathbf{u}_{2}+x_{3} \mathbf{u}_{3}+\ldots+x_{m} \mathbf{u}_{m}=\mathbf{0} \tag{3}
\end{equation*}
$$

is unique. What is this unique solution?
If this criteria is met, we say that the vectors are linearly independent.
4. Is the following set of vectors is linearly independent? Do they span \mathcal{R}^{3} ?

$$
\left\{\left[\begin{array}{r}
4 \\
0 \\
-3
\end{array}\right],\left[\begin{array}{r}
-2 \\
-1 \\
5
\end{array}\right],\left[\begin{array}{r}
-8 \\
2 \\
-19
\end{array}\right]\right\}
$$

Form the matrix A from the vectors above. How many solutions does the system $A \mathbf{x}=\mathbf{b}$, for any vector $\mathbf{b} \in \mathcal{R}^{3}$, have?
5. Is the following set of vectors is linearly independent? Do they span \mathcal{R}^{3} ?

$$
\left\{\left[\begin{array}{r}
1 \\
-1 \\
-3
\end{array}\right],\left[\begin{array}{r}
6 \\
4 \\
-3
\end{array}\right]\right\}
$$

Form the matrix A from the vectors above. How many solutions does the system $A \mathbf{x}=\mathbf{b}$, for any vector $\mathbf{b} \in \mathcal{R}^{3}$, have?

