Practice #4 - Linear Algebra

1. Let $T(\mathbf{x}) = A\mathbf{x}$. Determine if $T(\mathbf{x})$ is one-to-one and if $T(\mathbf{x})$ is onto.

(a)
$$A = \begin{bmatrix} 5 & 4 & -2 \\ 3 & -1 & 0 \end{bmatrix}$$

(b)
$$A = \begin{bmatrix} 2 & 8 & 4 \\ 3 & 2 & 3 \\ 1 & 14 & 5 \end{bmatrix}$$

2. Perform the indicated computations, if possible, using the given matrices

$$A = \begin{bmatrix} 2 & 5 \\ 3 & -4 \end{bmatrix}, \qquad B = \begin{bmatrix} 3 & 1 \\ 4 & -5 \end{bmatrix}, \qquad C = \begin{bmatrix} 2 & 1 \\ 5 & 4 \\ 0 & -1 \end{bmatrix}, \qquad D = \begin{bmatrix} 2 & -2 & -3 \\ 0 & 3 & 1 \end{bmatrix}$$
(a) $A + B$

-

_

(b) *AC*

(c) CB

(d) A^2

(f) DB

(g) $C^T - D$

(h) BA + DC

- 3. Expand each of the given matrix expressions and combine as many terms as possible. Assume that all matrices are $n \times n$.
 - (a) (A+I)(A-I)
 - (b) $(A+I)(A^2+A)$
 - (c) $(A + B^2)(BA A)$
 - (d) A(A+B) + B(B-A)
- 4. Why are the following matrix equations false?
 - (a) $(A+B)^2 = A^2 + 2AB + B^2$
 - (b) $A^2 B^2 = (A B)(A + B)$
- 5. If A is a symmetric matrix, show that $A + A^T$ is also symmetric.