Practice \#5 - Matrix operations

1. Matrices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D have dimensions given by :

- A is 5×7
- B is 4×5
- C is 3×4
- D is 7×1
- E is 1×4
(a) Indicate how many rows and how many columns each matrix has.
(b) How many matrix products can you form with these matrices? Indicate the dimensions of the resulting products. Include transpose operators and matrix powers.
(c) Can you construct a 4×4 square matrix from the above?
(d) Can you construct a 5×5 square matrix from the above?
(e) Can you produce a scalar (a 1×1 matrix) from the above?
(f) Construct a matrix that can be raised to a power.
(g) Create a matrix product with the most possible number of entries?
(h) Suppose $F=B A$. Describe how you would compute entry f_{26} of F.

2. A matrix A is given by

$$
A=\left[\begin{array}{rrrr}
3 & 0 & 5 & 3 \\
1 & 2 & -1 & 2
\end{array}\right]
$$

Find two identity matrices that satisfy $A I=A$ and $I A=A$
3. Suppose A and B are $n \times n$ matrices and $B A=I$. What is a solution to $A \mathbf{x}=\mathbf{b}$? Assume that \mathbf{x} and b are $n \times 1$ vectors.
4. Expand each of the given matrix expressions and combine as many terms as possible. Assume that all matrices are $n \times n$.
(a) $(A+I)(A-I)$
(b) $(A+I)\left(A^{2}+A\right)$
(c) $\left(A+B^{2}\right)(B A-A)$
(d) $A(A+B)+B(B-A)$
5. Why are the following matrix equations false?
(a) $(A+B)^{2}=A^{2}+2 A B+B^{2}$
(b) $A^{2}-B^{2}=(A-B)(A+B)$
6. If A is a symmetric matrix, show that $A+A^{T}$ is also symmetric.

