Practice #5 - Matrix operations

- 1. Matrices A, B, C and D have dimensions given by :
 - $A ext{ is } 5 \times 7$
 - B is 4×5
 - C is 3×4
 - D is 7×1
 - E is 1×4
 - (a) Indicate how many rows and how many columns each matrix has.
 - (b) How many matrix products can you form with these matrices? Indicate the dimensions of the resulting products. Include transpose operators and matrix powers.
 - (c) Can you construct a 4×4 square matrix from the above?
 - (d) Can you construct a 5×5 square matrix from the above?
 - (e) Can you produce a scalar (a 1×1 matrix) from the above?
 - (f) Construct a matrix that can be raised to a power.
 - (g) Create a matrix product with the most possible number of entries?
 - (h) Suppose F = BA. Describe how you would compute entry f_{26} of F.

2. A matrix A is given by

$$A = \begin{bmatrix} 3 & 0 & 5 & 3 \\ 1 & 2 & -1 & 2 \end{bmatrix}$$

Find two identity matrices that satisfy AI = A and IA = A

- 3. Suppose A and B are $n \times n$ matrices and BA = I. What is a solution to $A\mathbf{x} = \mathbf{b}$? Assume that \mathbf{x} and \mathbf{b} are $n \times 1$ vectors.
- 4. Expand each of the given matrix expressions and combine as many terms as possible. Assume that all matrices are $n \times n$.

(a)
$$(A+I)(A-I)$$

(b)
$$(A+I)(A^2+A)$$

(c)
$$(A + B^2)(BA - A)$$

- (d) A(A+B) + B(B-A)
- 5. Why are the following matrix equations false?

(a)
$$(A+B)^2 = A^2 + 2AB + B^2$$

- (b) $A^2 B^2 = (A B)(A + B)$
- 6. If A is a symmetric matrix, show that $A + A^T$ is also symmetric.