Practice \#1-Linear Independence

1. What is the difference between these two sets of vectors?

$$
\left\{\left[\begin{array}{r}
3 \\
-2
\end{array}\right],\left[\begin{array}{l}
1 \\
4
\end{array}\right]\right\} \quad \text { and } \quad\left\{\left[\begin{array}{l}
1 \\
3
\end{array}\right],\left[\begin{array}{l}
-2 \\
-6
\end{array}\right]\right\}
$$

Based on your observation, formulate a mathematical definition of "linear independence".
2. According to your definition, is the following set "linearly independent"?

$$
\left\{\left[\begin{array}{l}
1 \\
3
\end{array}\right],\left[\begin{array}{r}
6 \\
-5
\end{array}\right],\left[\begin{array}{l}
1 \\
4
\end{array}\right]\right\}
$$

(a) Formulate a vector equation involving all three vectors and solve the equation to determine if the vectors are independent.
3. Determine if the following set is linearly independent.

$$
\left\{\left[\begin{array}{r}
4 \\
0 \\
-3
\end{array}\right],\left[\begin{array}{r}
-2 \\
-1 \\
5
\end{array}\right],\left[\begin{array}{r}
-8 \\
2 \\
-19
\end{array}\right]\right\}
$$

(a) Formulate three different vector equations for this problem. Can they all be correct? How do you decide which one is "correct"?
(b) Is there a single "universal" equation that will cover all cases? Hint : This "universal" equation is a homogeneous equation.
(c) Solve a single "universal" vector equation to determine if the vectors are linearly independent.
4. Write down the steps in determining whether a set of vectors of linearly independent. Hint: There are three steps!
(a) Formulate ...
(b) Solve ...
(c) Decide ...

