Practice #3 - Linear Algebra

1. Let $T(\mathbf{x}) = A\mathbf{x}$. Determine if $T(\mathbf{x})$ is one-to-one and if $T(\mathbf{x})$ is onto.

(a)
$$A = \begin{bmatrix} 5 & 4 & -2 \\ 3 & -1 & 0 \end{bmatrix}$$

(b)
$$A = \begin{bmatrix} 2 & 8 & 4 \\ 3 & 2 & 3 \\ 1 & 14 & 5 \end{bmatrix}$$

2. Perform the indicated computations, using the given matrices

$$A = \begin{bmatrix} 2 & 5 \\ 3 & -4 \end{bmatrix}, \qquad B = \begin{bmatrix} 3 & 1 \\ 4 & -5 \end{bmatrix}, \qquad C = \begin{bmatrix} 2 & 1 \\ 5 & 4 \\ 0 & -1 \end{bmatrix}, \qquad D = \begin{bmatrix} 2 & -2 & -3 \\ 0 & 3 & 1 \end{bmatrix}$$

(a)
$$A + B$$

(d)
$$A^2$$

(e)
$$B - 3I_2$$

(f)
$$DB$$

(g)
$$C^T - D$$

(h)
$$BA + DC$$

3. Expand each of the given matrix expressions and combine as many terms as possible. Assume that all matrices are $n \times n$.

(a)
$$(A + I)(A - I)$$

(b)
$$(A+I)(A^2+A)$$

(c)
$$(A + B^2)(BA - A)$$

(d)
$$A(A+B) + B(B-A)$$

4. Why are the following matrix equations false?

(a)
$$(A+B)^2 = A^2 + 2AB + B^2$$

(b)
$$A^2 - B^2 = (A - B)(A + B)$$

5. If A is a symmetric matrix, show that $A + A^{T}$ is also symmetric.