Practice \#3 - Linear Algebra

1. Let $T(\mathbf{x})=A \mathbf{x}$. Determine if $T(\mathbf{x})$ is one-to-one and if $T(\mathbf{x})$ is onto.
(a) $A=\left[\begin{array}{ccc}5 & 4 & -2 \\ 3 & -1 & 0\end{array}\right]$
(b) $A=\left[\begin{array}{ccc}2 & 8 & 4 \\ 3 & 2 & 3 \\ 1 & 14 & 5\end{array}\right]$
2. Perform the indicated computations, using the given matrices

$$
A=\left[\begin{array}{rr}
2 & 5 \\
3 & -4
\end{array}\right], \quad B=\left[\begin{array}{rr}
3 & 1 \\
4 & -5
\end{array}\right], \quad C=\left[\begin{array}{rr}
2 & 1 \\
5 & 4 \\
0 & -1
\end{array}\right], \quad D=\left[\begin{array}{rrr}
2 & -2 & -3 \\
0 & 3 & 1
\end{array}\right]
$$

(a) $A+B$
(b) $A C$
(c) $C B$
(d) A^{2}
(e) $B-3 I_{2}$
(f) $D B$
(g) $C^{T}-D$
(h) $B A+D C$
3. Expand each of the given matrix expressions and combine as many terms as possible. Assume that all matrices are $n \times n$.
(a) $(A+I)(A-I)$
(b) $(A+I)\left(A^{2}+A\right)$
(c) $\left(A+B^{2}\right)(B A-A)$
(d) $A(A+B)+B(B-A)$
4. Why are the following matrix equations false?
(a) $(A+B)^{2}=A^{2}+2 A B+B^{2}$
(b) $A^{2}-B^{2}=(A-B)(A+B)$
5. If A is a symmetric matrix, show that $A+A^{T}$ is also symmetric.

