Practice \#6 - Linear Algebra

1. Answer questions about the matrix A, given as

$$
A=\left[\begin{array}{rrrr}
1 & -2 & 7 & 5 \\
-2 & -1 & -9 & -7 \\
1 & 13 & -8 & -4
\end{array}\right] \sim B=\left[\begin{array}{rrrr}
1 & 0 & 5 & 19 / 5 \\
0 & 1 & -1 & -3 / 5 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

(a) Verify that the row-reduced form is correct.
(b) The null space of A is a subset of \qquad .
(c) Which of the following describes null (A) ?
(1) $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=s_{1}\left[\begin{array}{r}-5 \\ 1 \\ 1 \\ 0\end{array}\right]+s_{2}\left[\begin{array}{r}-19 / 5 \\ 3 / 5 \\ 0 \\ 1\end{array}\right]$
(2) $\operatorname{span}\left\{\left[\begin{array}{r}5 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{r}19 / 5 \\ -3 / 5 \\ 0\end{array}\right]\right\}$
(3) $\left\{\left[\begin{array}{r}-5 \\ 1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{r}-19 / 5 \\ 3 / 5 \\ 0 \\ 1\end{array}\right]\right\}$
(4) $\operatorname{span}\left\{\left[\begin{array}{r}-5 \\ 1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{r}-19 / 5 \\ 3 / 5 \\ 0 \\ 1\end{array}\right]\right\}$
(d) What is a basis for $\operatorname{null}(A)$?
(e) What is the dimension of $\operatorname{null}(A)$? \qquad
(f) What is the nullity of A ? \qquad
2. Examples of null spaces
3. The following chemical reaction

$$
\mathrm{C}_{3} \mathrm{H}_{8}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

show how propane and oxygen are converted to CO_{2} and water. We can balance this equation by solving $A \mathbf{x}=\mathbf{0}$ where matrix A is given by

$$
A=\left[\begin{array}{rrrr}
3 & 0 & -1 & 0 \\
8 & 0 & 0 & -2 \\
0 & 2 & -2 & -1
\end{array}\right] \sim B=\left[\begin{array}{llll}
1 & 0 & 0 & -1 / 4 \\
0 & 1 & 0 & -5 / 4 \\
0 & 0 & 1 & -3 / 4
\end{array}\right]
$$

(a) Verify that the above matrix A and the row-reduced matrix B are correct.
(b) What is the null space of A ?
(c) Describe a basis for A.
(d) Interpret $\operatorname{null}(A)$ in terms of the chemical reaction problem.
4. Traffic flow. On the last exam, you solved the traffic flow problem

by solving the problem $A \mathbf{x}=\mathbf{b}$ for

$$
A=\left[\begin{array}{rrr}
1 & 1 & 0 \\
0 & 1 & -1 \\
1 & 0 & 1
\end{array}\right] \quad \text { and } \quad \mathbf{b}=\left[\begin{array}{c}
45 \\
10 \\
35
\end{array}\right]
$$

(a) Verify that the above matrix system is correct.
(b) Row-reducing the augmented matrix $[A \mid \mathbf{b}]$, one obtains the matrix B

$$
A \quad \sim \quad B=\left[\begin{array}{rrrr}
1 & 0 & 1 & 35 \\
0 & 1 & -1 & 10 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

(c) Write down the solution in vector form.
(d) What is the null space of A ?
(e) What role does the null space play in this problem?

