Practice \#7- Linear Algebra

1. Use the "row method" to find a basis for set spanned by the following set of vectors.

$$
\mathbf{u}_{1}=\left[\begin{array}{r}
1 \\
0 \\
-1 \\
1
\end{array}\right], \quad \mathbf{u}_{2}=\left[\begin{array}{l}
2 \\
1 \\
0 \\
2
\end{array}\right], \quad \mathbf{u}_{3}=\left[\begin{array}{l}
0 \\
1 \\
2 \\
0
\end{array}\right], \quad \mathbf{u}_{4}=\left[\begin{array}{r}
3 \\
1 \\
-1 \\
3
\end{array}\right]
$$

What is the dimension of the space spanned by this set?
2. Use the "column method" to find a basis for set spanned by the following set of vectors.

$$
\mathbf{u}_{1}=\left[\begin{array}{l}
1 \\
0 \\
3 \\
1
\end{array}\right], \quad \mathbf{u}_{2}=\left[\begin{array}{r}
4 \\
2 \\
13 \\
4
\end{array}\right], \quad \mathbf{u}_{3}=\left[\begin{array}{l}
2 \\
1 \\
6 \\
3
\end{array}\right], \quad \mathbf{u}_{4}=\left[\begin{array}{r}
-1 \\
1 \\
-2 \\
-2
\end{array}\right]
$$

What is the dimension of the space spanned by this set?
3. Find a basis for the column space, the row space and the null space of A. Verify that the Rank-Nullity Theorem holds.

$$
A=\left[\begin{array}{rrrr}
1 & 2 & 0 & -1 \\
-2 & -3 & -1 & 4 \\
1 & 4 & -2 & 4 \\
2 & 2 & 2 & -4
\end{array}\right] \sim B=\left[\begin{array}{rrrr}
1 & 0 & 2 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

4. Find a basis for the column space, the row space and the null space of A. Verify that the Rank-Nullity Theorem holds.

$$
A=\left[\begin{array}{rrrr}
1 & 4 & -1 & 1 \\
3 & 11 & -1 & 4 \\
1 & 5 & 2 & 3 \\
2 & 8 & -2 & 2
\end{array}\right]
$$

5. Suppose that A is a 6×8 matrix. If the dimension of the row space of A is 5 , what is the dimension of the column space of A ?
6. Suppose that A is a 9×7 matrix. If the dimension of $\operatorname{col}(A)$ is 5 , what is the dimension of $\operatorname{row}(A)$?
7. Suppose that A is a 9×7 matrix that has an echelon form with one zero row. Find the dimensions of the column space of A, the row space of A and the null space of A.
8. A 5×13 matrix A has a null space of dimension 10 . What is the rank of A ?
9. Suppose that A is a 6×11 matrix and that $T(\mathbf{x})=A \mathbf{x}$. If nullity $(A)=7$, what is the dimension of the range of T ?
10. Suppose that A is a 17×12 matrix and that $T(\mathbf{x})=A \mathbf{x}$. If $\operatorname{rank}(A)=8$, what is the dimension of the kernel of T ?
11. Suppose that A is a 5×13 matrix and that $T(\mathbf{x})=A \mathbf{x}$. If T is onto, then what is the dimension of the null space of A ?
12. (True/False) If A is a square matrix, then $\operatorname{row}(A)=\operatorname{col}(A)$.
13. (True/False) The rank of A cannot exceed the number of rows of A.
14. (True/False) If \mathbf{y} is a solution to $A \mathbf{x}=\mathbf{b}$, then \mathbf{y} is $\operatorname{in} \operatorname{row}(A)$.
