Practice \#9-Linear Algebra

1. Compute the determinant of the following matrices.
(a)

$$
A=[-5]
$$

$\operatorname{det}(A)=$ \qquad
(b)

$$
\operatorname{det}(A)=
$$

(c)

$$
A=\left[\begin{array}{rrr}
2 & 2 & 3 \\
-1 & 4 & 1 \\
3 & 1 & -2
\end{array}\right]
$$

$$
\operatorname{det}(A)=
$$

\qquad .
2. Find the determinant of a 5×5 diagonal matrix whose diagonal entries are $1,2,3,4,5$.
3. Find the determinant of a 5×5 upper triangular matrix whose diagonal entries are all ones.
4. Find the determinant of a 5×5 lower triangular matrix whose diagonal entries are all ones.
5. Find the determinant of an identity matrix I_{5} in which row 2 and row 3 have been swapped.
6. Find the determinant of an identity matrix I_{5} that has its rows in reverse order, so that the diagonal goes from the lower right to the upper left.
7. Find the indicated quantity for the following matrix A

$$
A=\left[\begin{array}{rrrr}
3 & -4 & 0 & 5 \\
2 & 1 & -7 & 1 \\
0 & -3 & 2 & 2 \\
5 & 8 & -2 & -1
\end{array}\right]
$$

(a) $M_{23}=$
(b) the minor of a_{31}
(c) C_{43}
(d) A co-factor expansion about row 3 .
8. Let I_{5} be the 5×5 identity matrix. What is $\operatorname{det}\left(-2 I_{5}\right)$?
9. Suppose $\operatorname{det}(A)=6$ and $\operatorname{det}(A B)=21$. What is the determinant of B ?
10. Let A be a 5×5 matrix whose determinant is 35 . Now swap rows 1 and 2 of A to get a matrix B. What is the determinant of the matrix B ? (Hint : Try this out on the matrix in Problem 1b.)
11. Let A be a square matrix and let B be the echelon form of A. What do you guess is the relationship between $\operatorname{det}(A)$ and $\operatorname{det}(B)$.
12. Suppose that A has an $L U$ factorization, so that $A=L U$, where L is a lower triangular matrix with all ones on the diagonal and U is an upper triangular matrix. What would be an easy way to compute $\operatorname{det}(A)$ using this factorization?

