Practice \#10-Linear Algebra

1. Let A be the following 2×2 matrix

$$
A=\left[\begin{array}{rr}
1 & 3 \\
-1 & 5
\end{array}\right]
$$

(a) What is $\operatorname{det}(A)$?
(b) What is $\operatorname{det}(-3 A)$?
(c) Swap rows 1 and 2 of A to get a matrix B. What is the determinant of the matrix B ?
(d) Multiply row 2 of A by 5 to get matrix B. What is $\operatorname{det}(B)$?
(e) Carry out a single row operation on A to get an upper triangular matrix B. What is $\operatorname{det}(B)$?
(f) Factorize A as $A=L U$. What would be an easy way to compute $\operatorname{det}(A)$ using this factorization?
2. (Review) Answer the following True/False questions. If your answer is False, explain why.
(a) Let A be a 5×7 matrix and let B be an echelon matrix formed from A. If B has no rows of zeros, the linear system $A \mathbf{x}=\mathbf{b}$ has a unique solution. $(\mathrm{T} / \mathrm{F})$
(b) Let A be a 4×13 matrix with rank 4 . The linear system $A \mathbf{x}=\mathbf{b}$ may be inconsistent for some b. $(\mathrm{T} / \mathrm{F})$
(c) Let A be a 13×4 matrix whose column space has dimension 4 . Then the linear system $A \mathbf{x}=\mathbf{b}$ has a unique solution. (T/F).

