Practice \#11 - Linear Algebra

1. Find the basis for the null space of matrix A. Do as little work as possible. Hint : Swap rows to get the matrix in reduced row echelon form.

$$
A=\left[\begin{array}{rrr}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & -2 & 0
\end{array}\right]
$$

2. Find the eigenvalues and eigenvectors of the matrix A.

$$
\left[\begin{array}{rrr}
2 & 5 & 1 \\
0 & -3 & -1 \\
2 & 14 & 4
\end{array}\right]
$$

(a) Write down the characteristic polynomial $p(\lambda)=\operatorname{det}(A-\lambda I)$ for A.
(b) Solve $p(\lambda)=0$ for eigenvalues λ. Hint: You will get three distinct eigenvalues.
(c) For each eigenvalue, solve $\operatorname{det}(A-\lambda I) \mathbf{x}=0$ for associated eigenvector \mathbf{x}.
3. Diagonalize A.

$$
A=\left[\begin{array}{rrr}
1 & 2 & 1 \\
0 & -3 & -2 \\
2 & 4 & 2
\end{array}\right]
$$

(a) Find the eigenvalues and associated eigenvectors of A.
(b) Create a matrix P whose columns are the eigenvectors of A.
(c) Create a diagonal matrix D with diagonal entries equal to the eigenvalues of A. Be sure to align eigenvalues and eigenvectors.
(d) Convince yourself that the following matrix relation holds :

$$
A P=P D
$$

Hint:

$$
A\left[\begin{array}{lll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}
\end{array}\right]=\left[\begin{array}{lll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}
\end{array}\right]\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right]
$$

(e) The diagonalization can then be written as $A=P D P^{-1}$.
(f) Question : How do we know that P is invertible? Answer : Eigenvectors associated with distinct eigenvalues are linearly independent!
4. Find the eigenvalues and eigenvectors of A.

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

(a) What is the multiplicity of each eigenvalue?
(b) What is the eigenspace associated with each eigenvector?
(c) Is A diagonalizable?
5. Find the eigenvalues and eigenvectors of A.

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

(a) What is the multiplicity of each eigenvalue?
(b) What is the eigenspace associated with each eigenvector?
(c) Is A diagonalizable?
6. (True/False). A matrix A is diagonalizable if and only if it is invertible. (T/F). If False, explain or find a counter example.
7. Consider the general matrix A

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

(a) Write the characteristic polynomial in terms of the trace of A given by $\operatorname{tr}(A)=a+d$ and the determinant of A given by $\operatorname{det}(A)=a d-b c$.
(b) Show that the sum of the eigenvalues of A s equal to $\operatorname{tr}(A)$
(c) Show that the product of the eigenvalues of A is equal to $\operatorname{det}(A)$.

