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The logically rectangular finite volume grids for two-dimensional partial differential
equations on a sphere and for three-dimensional problems in a spherical shell introduced
recently have nearly uniform cell size, avoiding severe Courant number restrictions.
We present recent results with adaptive mesh refinement using the GEOCLAW software and
demonstrate well-balanced methods that exactly maintain equilibrium solutions, such as
shallow water equations for an ocean at rest over arbitrary bathymetry.

Keywords: shallow water equations; sphere; finite volume; adaptive mesh refinement;
well-balanced schemes; bathymetry

1. Introduction

Recently, Calhoun et al. (2008b) introduced a class of logically rectangular grids
(quadrilateral in two dimensions or hexahedral in three dimensions) that can be
used for solving partial differential equations on a sphere, illustrated in figure 1a.
These grids have the virtue that the cell sizes are nearly uniform (unlike latitude–
longitude grids, for example), while maintaining the simple (i, j , k) indexing of
logically rectangular grids. On the sphere the ratio of largest to smallest grid
cell area is less than 1.7. A potential disadvantage is that the four corners of the
computational rectangle are mapped to quadrilaterals that are nearly triangular;
the grid lines are far from orthogonal in these regions. We have demonstrated,
however, that appropriate finite volume methods can be effectively used on these
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(a) (b)

Figure 1. 50× 25 quadrilateral grids on the surface of a sphere.

grids that achieve second-order accuracy on smooth solutions and that also
capture shock waves and other discontinuities sharply (Calhoun et al. 2008a,b;
Calhoun & Helzel in press). In particular, we have presented results for the shallow
water equations on the sphere for both shock waves and the Rossby–Haurwitz test
problem of Williamson et al. (1992) on a single grid as well as some preliminary
results with adaptive mesh refinement (AMR).
In this paper we present additional results for shallow water on the sphere

and introduce a finite volume method for flow over arbitrary topography or
bathymetry on the sphere. We show that the method is ‘well balanced’ for the
case of an ocean at rest, meaning that it preserves the stationary steady state in
this case and also accurately computes small amplitude wave propagation on top
of this equilibrium solution.
The test problems are implemented in GEOCLAW, a subset of the CLAWPACK

software that has been developed for geophysical flows in work with David George
(George & LeVeque 2006, 2008; LeVeque & George 2007; George 2008), initially
in the context of tsunami modelling in the mid-latitudes on a latitude–longitude
grid. The complete source code for all the examples presented here will be made
available on the Web (www.clawpack.org/links/sphere).
The AMR code in GEOCLAW is based on AMRCLAW, originally developed by

Berger & LeVeque (1998). Refinement is done on logically rectangular patches in
the computational domain, an approach that has been widely used, including for
three-dimensional flow on the sphere in the recent work of Hubbard & Nikiforakis
(2003), for example. The grid mappings we use here have the advantage that the
computational domain is a single rectangle, greatly simplifying the application of
adaptive refinement.

2. The grid mappings

Figure 2 illustrates the mapping from the computational domain (figure 2a) to
the quadrilateral grid we use on the sphere (figure 2d).
Details of this mapping are presented in Calhoun et al. (2008b) and a

Python implementation is displayed in figure 3. Here (xc,yc) is a point in
the computational domain [−3, 1] × [−1, 1] and (xp,yp,zp) is the image on
the sphere. The square [−3,−1] × [−1, 1] is mapped to the lower hemisphere,
while [−1, 1] × [−1, 1] is mapped to the upper hemisphere.
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(a) (b)

(c) (d )

Figure 2. (a) The 40× 20 rectangular grid in the computational domain. (b,c) Some grid lines are
shaded to help visualize the mapping. (d) The final quadrilateral grid on the sphere is shown.

Note one modification from the mapping presented in Calhoun et al. (2008b):
the expression for D used here involves sin(πd/2) rather than d(2− d) as in the
original mapping. This leads to slightly more uniform cells and is more natural
since equally spaced points along a diagonal are then mapped to points that
are equally spaced in latitude in the image. In practice it makes little difference
in computed results. As written here, this mapping produces the grid shown
in figure 1a.
We also mention a modified version of this mapping, which can be obtained by

un-commenting the line R = Rsphere * sin(pi*d/2). With this choice the
grid shown in figure 1b is obtained. This grid has the possible advantage that one
set of grid lines are lines of constant latitude. (The latitude lines are concentric
squares in the computational domain.) However, this grid is not as smooth near
the poles as the grid shown in figure 1a, and in practice has not been found to
be advantageous, even for the test problems of §7 where the true solution is axi-
symmetric (results not shown here). The grid may prove useful for specialized
applications however, such as purely zonal advection.
The quadrilateral grid we use on the sphere is easily extended to a three-

dimensional hexahedral grid in the normal direction. The computational domain
is again purely Cartesian [−3, 1] × [−1, 1] ×[ R1,R2] for a shell with inner radius
R1 and outer radius R2. We are currently working on the development of a
well-balanced AMR method for solving atmospheric flow problems on this grid,
for situations in which the flow is a small perturbation of an equilibrium with
a hydrostatic pressure gradient in the normal direction. This work will be
presented elsewhere.
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Figure 3. Python code for the sphere mapping, as described more fully in Calhoun et al. (2008b;
which includes a Matlab version).

3. Shallow water equations on the sphere

Since there is no smooth coordinate system for our grids on the sphere, we keep
track of the fluid velocity in terms of a full three-dimensional vector #u = (u, v,w)
in each finite volume grid cell. These define a velocity vector that should be
tangent to the sphere. Similar approaches are used, for example, in Swarztrauber
et al. (1997) and Giraldo et al. (2002).
We use the geopotential height φ(#x , t) and solve the shallow water equations

on the sphere in the form

φt + ∇ · (φ#u) = 0,

(φ#u)t + P(∇ · F̃(q)) = −2Ωzφ
R2

(#x × #u) − φP(∇sφ̄).




 (3.1)

Here q = [φ, φu, φv, φw]T and φ̄ is the surface geopotential.

F̃(q) =




φu2 + 1

2φ
2

φuv
φuw



#i +




φuv

φv2 + 1
2φ
2

φvw



 #j +




φuw
φvw

φw2 + 1
2φ
2



 #k (3.2)
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is the momentum flux. The symbol P denotes the projection matrix that projects
a vector at #x to the tangent plane,

P = I − #x #xT
R2
. (3.3)

The divergence of the flux and the last term on the right in equation (3.1), which
appears for flow over variable topography specified by a surface geopotential
φ̄(#x), are projected to the tangent plane. The Coriolis term involving the rotation
rate Ω has already been projected to the tangent plane. Giraldo et al. (2002)
provide justification that these equations are equivalent to standard formulations
of shallow water on the sphere.
Note that for shallow incompressible water of depth h on the sphere the

geopotential is φ = gh, where g varies with latitude to incorporate the centrifugal
force on a rotating sphere.

4. Topography and well-balanced methods

In applications such as tsunami modelling, it is very important that the numerical
method maintains the equilibrium solution consisting of an ocean at rest, for
which the depth h and the bathymetry B both vary greatly, but the surface
elevation η ≡ h + B is constant and the velocities are identically 0. Numerical
methods often do not maintain this steady state unless care is taken, since the
divergence of the flux and the source term are both large but cancel out. In
particular, fractional step methods in which one alternates between solving the
homogeneous conservation laws and the source term equations do not work well
at all (e.g. LeVeque 1998). In terms of the geopotential φ, the ocean at rest
equilibrium solution has φ + gB constant (where again g varies with latitude if
the sphere is rotating).
The high-resolution wave-propagation method that we present in §6 exactly

preserves such an equilibrium solution and also accurately captures small
amplitude waves on top of such a steady state. Much research has recently
been devoted to developing such ‘well-balanced’ methods, particularly for shallow
water equations (e.g. Gosse 2000, 2001; Audusse et al. 2004; Bouchut 2004;
Castro et al. 2008).

5. Boundary conditions

For finite volume methods of the type we use, boundary conditions at the
edges of the computational rectangle are generally implemented using the
standard procedure of introducing two rows of ‘ghost cells’ at each edge of
the computational domain. Values in these cells are set at the start of each
time step by copying data from elsewhere in the domain, since each edge of
the domain is adjacent to another edge after performing the mapping illustrated
in figure 2. After setting the ghost cells in this manner, the wave-propagation
algorithm is applied at all points in the computational domain. We fill two
rows of ghost cells because this method has a stencil that extends two grid
cells out in each direction (the adjacent cell value is used in solving the
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Figure 4. The grey ghost cells receive data from interior cells as indicated.

Riemann problem at the cell interface and the value in the next proximate
grid cell is required in applying limiters to the resulting waves for the high-
resolution method).
Let (xc, yc) represent a point in the computational domain. After the mapping,

the boundaries xc = −3 and xc = +1 meet up along the equator and these
boundaries simply have standard periodic boundary conditions:

q(−3− ε, yc) = q(1− ε, yc),
q(1+ ε, yc) = q(−3+ ε, yc),

}
(5.1)

for −1≤ yc ≤ 1. At the boundary ε = 0, but to fill the ghost cells these expressions
are used for ε > 0. These are easily implemented on a 2m ×m grid by setting

Qi,j =Q2m+i,j , for i = 0,−1,
Q2m+i,j =Qi,j , for i = 1, 2,

}
(5.2)

for j = 1, 2, . . . ,m at the start of each time step.
Along yc = ±1 the boundary conditions are only slightly more complicated. At

each yc = ±1 boundary, the segment −3≤ xc ≤ −1 matches up with the segment
−1≤ xc ≤ 1 with the orientation reversed, as seen in figures 2 and 4, and hence

q(xc, 1+ ε) = q(−2− xc, 1− ε),
q(xc,−1− ε) = q(−2− xc,−1+ ε),

}
(5.3)

for −3≤ xc ≤ 1. This is implemented by copying data according to
Qi,j =Q2m+1−i,1−j , for j = 0,−1,

Qi,m+j =Q2m+1−i,m−1−j , for j = 1, 2,

}
(5.4)

for i = 1, 2, . . . , 2m.
These boundary conditions were implemented for single-grid calculations in the

example presented in Calhoun et al. (2008b) and Fortran code is available at the
webpage for that paper. These boundary conditions were recently implemented
in the AMR version of GEOCLAW as one possible choice of boundary conditions,
facilitating the use of AMR for flow problems on the sphere. With AMR, the
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non-standard boundary conditions (5.3) require some work to implement, since
a grid that is adjacent to the top or bottom boundary will generally have to
fill ghost cell values from a different grid at the same level or by interpolating
from coarser grids, and logic must be incorporated to search for the relevant
data at the appropriate interior point as defined by equation (5.3). Similar
issues arise for standard periodic boundary conditions, which were implemented
in Berger’s original AMR code that formed the basis for the AMR routines
in CLAWPACK.
Some preliminary results using AMR on the sphere were presented in Calhoun

et al. (2008a), but with a different approach to specifying boundary conditions.
We mention this alternative since it may be useful to those wishing to apply other
AMR software to the sphere using our grid mapping. The computational domain
can be doubled in size to a full square [−3, 1] × [−3, 1] by defining

q(xc, yc, t) = q(−2− xc,−2− yc, t), (5.5)

for −3≤ xc ≤ 1. This simply reflects all the data through the point (−1,−1). The
mapping can be extended in an obvious way so that the new computational
rectangle [−3, 1] × [−3,−1] is mapped to a second copy of the sphere and
each copy will contain the same value of q at each point on the sphere. The
advantage of introducing this second copy is that the boundary conditions
at yc = −3 and yc = 1 are now the standard periodic boundary conditions in
this direction,

q(xc,−3− ε) = q(xc, 1− ε),
q(xc, 1+ ε) = q(xc,−3+ ε),

}
(5.6)

for −3≤ xc ≤ 1. Hence, any AMR code that can handle periodic boundary
conditions on a rectangular domain can be applied on the sphere, at double the
computer time but without any need to reprogram the AMR boundary conditions.

6. The finite volume method

The cell average Qnij in cell (i, j) at time tn is updated by waves that propagate into
the cell from the neighbouring cell interfaces, which are determined by solving
one-dimensional Riemann problems at each interface. The approach we use is the
‘f -wave formulation’ of the wave-propagation algorithm introduced in Bale et al.
(2002) and also discussed in ch. 17 of LeVeque (2002). This means that the waves
are determined by computing the jump in the flux plus a contribution from the
source terms, and then decomposing this vector into eigenvectors of a linearized
Jacobian matrix defined at each cell interface, as described in more detail below.
These waves are then also used to define correction terms that yield a method
that is second-order accurate on smooth solutions. Limiters are applied to these
waves (by comparing with waves from adjacent Riemann problems) in order to
avoid non-physical oscillations and produce high-resolution results. ‘Transverse
Riemann problems’ must also be solved to determine the portion of waves that
move transversely into corner-adjacent cells and this appears to be an important
aspect of these algorithms in successfully solving multi-dimensional problems on
the highly skewed grids of figure 1. Complete details of this approach can be
found in LeVeque (2002).

Phil. Trans. R. Soc. A (2009)

 on 19 October 2009rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


4490 M. J. Berger et al.

Here we concentrate on describing the unique aspects of the algorithm for flow
over topography on the sphere, which is primarily concerned with the algorithm
for solving the one-dimensional Riemann problem at a cell edge to obtain a
suitable set of f -waves.
Consider, for example, the interface (i − 1/2, j) between cells (i − 1, j) and

(i, j). Let Q̃nij be the momentum components of the cell averages Q
n
ij on the (i, j)

grid cell at time tn , which we suppose to lie in the tangent plane at the cell centre.
We will solve a one-dimensional Riemann problem between states

Ql =
[

φl
φl ul
φlvl

]

and Qr =
[

φr
φrur
φrvr

]

, (6.1)

where φl = φni−1,j and φr = φnij . To obtain the velocities we first project the
momentum components of the data in the two neighbouring cells, Q̃ni−1,j and
Q̃nij , onto a common direction. We choose the direction that is normal to the
cell edge and that lies in the tangent plane at the midpoint of the cell edge.
This defines the normal momentum components of the Riemann problem data,
φl ul and φrur . We also compute tangential momentum components φlvl and
φrvr by projecting the cell momenta onto the direction determined by the
cell edge.
From these Riemann data we can define an approximate Jacobian matrix, using

for example the Roe-averaged Jacobian Â. The eigenvalues of this matrix define
the wave speeds and the eigenvectors are used to determine the f -waves. This is
done by decomposing

& =




φrur

φru2r + 1
2φ
2
r

φrurvr



 −




φl ul

φl u2l + 1
2φ
2
l

φl ulvl



 + 1
2




0

(φl + φr )(φ̄r − φ̄l)
0



 (6.2)

as a linear combination of the eigenvectors r̂ p of Â,

& =
3∑

p=1
βpr̂ p =

3∑

p=1
Zp. (6.3)

The vectors Zp are the f -waves used in the wave-propagation algorithm.
The quantity & in equation (6.2) is the flux difference modified by the source

term from the varying bathymetry. For the special case of an ocean at rest, all
terms in equation (6.2) involving velocities drop out and all that remains are the
following terms in the second element of &: the pressure gradient 12(φ

2
r − φ2l ) and

the source term 1
2(φl + φr )(φ̄r − φ̄l). For the ocean at rest, the sea surface φ + φ̄

is constant and so it can be easily verified that these two terms cancel. Hence,
& is the zero vector in this case, with the result that the waves Zp all have zero
strength. For an ocean near rest, it is only the deviation from steady state that
is split into waves and propagated with our wave-propagation algorithm.
When AMR is used, some care must be exercised in interpolating values

between coarse grids and finer level grids, as required for example when initializing
a new fine grid in some region or interpolating ghost cell values from coarser levels.
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One crucial aspect is to do interpolations based on φ + φ̄ and then reconstruct φ,
rather than interpolating φ itself. This is discussed in more detail in the context
of tsunami modelling in George (2008).
The area of a quadrilateral grid cell on the sphere can exactly be computed as

the sum of the area of two spherical triangles. Note that with our grid mapping,
refined grid cells do not exactly match up with the underlying coarse grid cell in
physical space. Therefore, we calculate the area of every grid cell as the sum of the
areas of grid cells on the finest possible level that might be obtained by refining
the grid cell. In an analogous way we also calculate the surface geopotential in
each grid cell.

7. Numerical results

As a test case for the well-balanced method with adaptive refinement as described
in this paper, we have chosen a problem for which the solution varies only with
latitude so that a one-dimensional axisymmetric code can be used to generate a
fine grid reference solution. A test of this nature was also presented in Calhoun
et al. (2008b), but only on a single grid with no topography.
The one-dimensional reference solution (plotted as a solid line in figure 6) is

obtained by approximating the system

φt +
1
a

(φU )θ = 1
a

φU tan θ ,

(φU )t +
1
a

(
φU 2 + 1

2
φ2

)

θ

= −1
a

φφ̄θ + 1
a

φ(U 2 −V 2) tan θ − f φV ,

(φV )t +
1
a

(φUV )θ = 2
a

φUV tan θ + f φU .






(7.1)

Here φ = φ(θ , t) is the geopotential height, φ̄ = φ̄(θ) is the surface geopotential.
U =U (θ , t) and V =V (θ , t) are velocities in the latitudinal and the longitudinal
direction, respectively. Initial value problems of system (7.1) are approximated
for latitude θ ∈ [−π/2,π/2]. Reflecting boundary conditions are used on both
sides of this interval.
For our test problem we specify axisymmetric topography by choosing the

surface potential to be the following function of latitude θ :

φ̄(θ) = −40 000+ 20 000 exp
(

−1000
(
θ + π

6

)2)
, (7.2)

where θ varies from −π/2 at the south pole to π/2 at the north pole. Sea level is
taken to be the surface of geopotential 0, so the surface potential (7.2) corresponds
to an ocean of depth 40 000/g ≈ 4000m with an axisymmetric ridge about the
sphere at a latitude of −π/6 or 30◦ south. At the peak of the ridge the ocean
depth is reduced by half. The ocean at rest corresponds to φ(θ , t) ≡ −φ̄(θ) so that
φ(θ , t) + φ̄(θ) ≡ 0.
As initial conditions we perturb this to

φ(θ , t = 0) = −φ̄(θ) +A exp
(

−1000
(
θ − π

6

)2)
, (7.3)
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Figure 5. A coarse grid with one level of refined patches with a refinement factor 2 in each direction.
Shown on the grid and in the computational rectangle, where refinement is on rectangular patches.

corresponding to an axisymmetric elevation above sea level in a ring of latitude
π/6. Note the decay factor −1000 in the Gaussian, giving a width of roughly
200 km on the Earth. This is a reasonable wave length for a tsunami wave.
We initialize the zonal velocity V to V (θ , t = 0) = 0 and the meridional

momentum φU to

(φU )(θ , t = 0) = −200A exp
(

−1000
(
θ − π

6

)2)
. (7.4)

Here 200=
√
40 000 is the approximate wave speed and so the vector (φ,φU )

is approximately a 1-wave eigenvector, which results in most of the initial
perturbation moving southwards, with a much weaker wave moving north. In
the two-dimensional code on the sphere we must initialize the three-dimensional
momentum components of the solution vector (φu,φv,φw) to agree with this in
each grid cell by

(φu)(x , y, z , t = 0) = (φU )(θ)xz

R
√
x2 + y2

,

(φv)(x , y, z , t = 0) = (φU )(θ)yz

R
√
x2 + y2

,

(φw)(x , y, z , t = 0) = −(φU )(θ)(x2 + y2)
R

√
x2 + y2

.






(7.5)

We take A= 10 as the amplitude of the perturbation in the initial data. This
gives A/g ≈ 1m, which is realistic for tsunami modelling and tests the ability
of our approach to handle a wave that has very small amplitude relative to the
variations in topography (about 0.05% in this case).
We include Coriolis effects and take Ω = 7.292× 10−5, the rotation rate of the

Earth. For the radius of the Earth, we use R= 6.371× 106. In both the one- and
two-dimensional code we compute latitude relative to a perfect sphere, though
this could be replaced by an appropriate geoid.
Figure 5 shows how the AMR refinement might look at time t = 0 in the case

of very coarse grids.
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Figure 6. Zoomed-in view of the computed solutions (geopotential elevation above sea level) to the
axisymmetric test cases described in §7. In each figure (scatter plots of surface elevation at time
(i) 0, (ii) 24 000 and (iii) 40 000) the solid line was computed with a one-dimensional code using
5000 grid cells. The symbols show the solution on the sphere with the value of φij − φ̄(θ) in each
finite volume cell plotted against the latitude θij of the centre of the cell. (a) The solution on a
single 800× 400 computational grid. (b) The solution when the AMR algorithm is used. In this
figure the plus symbols show values from the coarsest level 1 grids, crosses show values from level
2 grids, and circles are values from level 3 grids.

Results of this test are shown in figure 6. Figure 6a shows scatter plots of the
solution when a single 800× 400 grid is used on the sphere, at three different
times. Figure 6b shows results where refinement is done near the main wave with
the following refinement factors:

level 1: 50× 25 grid,
level 2: refined by 4 (effective resolution 200× 100), and
level 3: refined by 4 (effective resolution 800× 400).
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Figure 7. Max-norm errors for the two calculations shown in figure 6, as a function of time.
The largest error occurs near the peak of the Gaussian. Also shown is the error only over grid
points that lie in the upper hemisphere. After time t ≈ 20 000 the peak has moved into the lower
hemisphere and this error decreases. In (b) the errors are calculated separately on each of the
three levels of grid refinement. There are no level 3 grids in the upper hemisphere after time
21 000. (a) Filled circles: mx= 800, mxnest= 1, level= 1; plus symbols: only over upper hemisphere.
(b) Filled circles: mx= 50, mxnest= 3, level= 1; plus symbols: only over upper hemisphere; filled
boxes: mx= 50, mxnest= 3, level= 2; cross symbols: only over upper hemisphere; filled triangles:
mx= 50, mxnest= 3, level= 3; filled diamonds: only over upper hemisphere.

For this particular example, the uniform grid test took roughly 1300 s
on a desktop machine, while the AMR calculation required 360 s. For this
axisymmetric calculation much of the grid was refined since the hump extends
around the sphere. For modelling a more localized region the benefits of AMR
would be more pronounced.
The AMR results exhibit comparable accuracy to the uniform fine grid within

the region of maximum refinement. This can be seen in the plots of max-norm
error versus time in figure 7, which track the error in the Gaussian peak and are
essentially the same with or without refinement. The peak is cut off in figure 6
in order to show the accuracy better in regions away from the peak.
In regions where the grid is less refined, such as the upper hemisphere at

later times, the AMR calculation gives somewhat reduced accuracy but still quite
acceptable given the coarseness of the grid. Note in particular that there is no
spurious reflection of wave energy near the edges of the refinement patches.
Also note that in all cases the scatter plot looks as smooth near θ = 0 as

elsewhere, indicating that the highly skewed cells on the equator are not causing
accuracy problems. Finally, note that no spurious waves are generated from the
region near θ = −π/6≈ −0.5 where the large topography feature is located. This
test problem is analogous to the one introduced by LeVeque (1998) for one-
dimensional shallow water equations, where it is demonstrated that all accuracy
is lost if a fractional step procedure is used for the topography source term. The
ability to capture this small amplitude wave depends on our use of the f -wave
technique.
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We have also tested the code with a wave of amplitude A= 5000, in which
case the Gaussian rapidly steepens into a shock wave. The high-resolution shock
capturing algorithms employed in GEOCLAW can handle this case as well. Results
analogous to figure 6 have been obtained (not shown here).

8. Conclusions

We have demonstrated that the quadrilateral grids introduced in Calhoun et al.
(2008b) can be successfully used to solve the shallow water equations on
the surface of the sphere with adaptive mesh refinement. This has been
accomplished using GEOCLAW by enhancing this software package with a new
choice of numerical boundary conditions needed for our quadrilateral geometry,
as described in §5. This software uses high-resolution shock capturing finite
volume methods that accurately capture shock wave propagation. We have also
implemented the numerical method using the f -wave formulation described in
§4, which ensures that the code is well balanced for an ocean at rest. Waves
of small amplitude relative to the variation in the bottom topography are well
captured, as illustrated in figure 6. Our quadrilateral grid has nearly constant cell
areas, leading to efficient solution with explicit methods having Courant number
between 0.5 and 1 in all cells. A potential difficulty is that some cells are highly
skewed, but with the multi-dimensional wave propagation algorithms we employ,
this does not appear to cause any loss of accuracy.
The computer code used to generate the numerical results and figures presented

in this paper, along with links to the GEOCLAW software, can be found at
www.clawpack.org/links/sphere.
This work was supported in part by DOE grant DE-FG02-88ER25053, AFOSR grant FA9550-06-
1-0203, NSF grant DMS-0106511 and DFG grant HE 4858/1-1.
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