
Finite volume approximation to the Laplace-Beltrami operator over a quadrilateral 
surface mesh

Edge fluxes can be approximated as

∫
dq

dn
ds ≈ |t|

|t̂|
csc(θ)∆q − cot(θ) ∆q̂

The  Laplace-Beltrami operator can then be approximated by

∇2q ≈ L(q) ≡ 1
Area

4∑

k=1

|tk|
|t̂k|

csc(θk)∆kq − cot(θk) ∆k q̂

The angles in the discrete finite volume formula are the angles between primal (solid) and dual (dashed) vectors.

tk · t̂k = |tk||t̂k| cos(θk), k ⇔ (i− 1/2, j)

and the differences in primal (cell centered) and dual (vertex) values of the function are given by 

∆q = qij − qi−1,j

∆q̂ = q̂i,j+1 − q̂i,j

Dual values are obtained by averaging primal values in smooth regions of the grid and by imposing flux continuity where the metric is not smooth.
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Other approaches to solving diffusion equations on surfaces : 

✦ “cotan” formula for triangular meshes (Dzuik, Demlow, 
Polthier, Pinkall,  Meyer, Desbrun and others)

✦ Embed the surface in 3d dimensional space and formulate 
the PDEs so that their solution coincides with desired 
solution on two dimensional embedded curved surface 
(Colella, Adalsteinsson, Sethian,  Bertalmio, Osher, ...)

✦ Solve as fully anisotropic diffusion problem in 
computational coordinates. 

Parabolic solver for diffusion equations on 
parametrically defined surfaces

We have developed a finite volume approximation to the Laplace-Beltrami 
operator on quadrilateral surface meshes

✦ 9-point finite volume stencil

✦ Does not require analytic metric terms

✦ Is second order accurate for meshes generated from smooth or 
piecewise smooth coordinate transformations

✦ Can be easily coupled with finite volume hyperbolic solvers for solving 
advection-reaction-diffusion equations.

✦ Orthogonal and non-orthogonal grids treated equally well

✦ Inspired by the diamond cell schemes of Coudière, Coirier, Vila, 
Villedieu and others, and the discrete duality finite volume (DDFV) 
schemes of  Hermeline, Omnes, Domelevo, Hupert and others.

✦ Time stepping is done using an explicit RKC solver (Sommeijer, et al. 
1997)

✦ Advection terms handled using Clawpack (R. J. LeVeque, 1997)

✦ Code handles general mixed boundary conditions on the curvilinear 
boundary

✦ All computational meshes are logically rectangular and have nearly 
uniform cell sizes.
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For more information, see
• D. Calhoun, C. Helzel, “A finite volume method for solving parabolic equations on logically 

Cartesian curved surface meshes”, submitted to SIAM J. Sci. Comput. 2009.
• D. Calhoun, C. Helzel, R. J. LeVeque, “Logically rectangular grids and finite volume methods 

for PDEs in circular and spherical domains”, SIAM Review, Vol. 50 (Dec. 2008).
Please contact donna.calhoun@cea.fr.  Code is also available.

Turing patterns

ut = Dδ∇2u + αu(1− τ1v
2) + v(1− τ2u)

vt = δ∇2v + βv(1 + α(τ1/β)uv) + u(γ + τ2v)
See Calhoun et  al. (SIAM Review, 2008) 

Flow by mean curvature 

ut = ∇2u +
u− u3

D2

Allen-Cahn equations (see J. Greer, 
SISC, 2006)

Solving Advection-Reaction-Diffusion Equations on Curved Surfaces

Chemotaxis in a petri-dish 

ut = δu∇2u + α∇ ·
(

u∇v

(1 + v)2

)
+ ρu(δ − u) + v(1− τ2u)

vt = ∇2v + u(βu− v)

See Tyson et al. (J. Math. Bio., 1999)

Anisotropic crystal growth

ut = ∇2u + f(φ)
dφ

dt
ε2

m
φt = ε2∇η(θ)∇φ + g(φ, u)

See Murray et al. J. of Crystal Growth, 1995

Logically Cartesian mesh 
for circular domains 

Logically Cartesian meshes
See Calhoun et al. 2008, (sphere 
grid)  and J. Gielis Am. J. of 
Botany, 2003. (supershape).
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