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Solving parabolic equations on surfaces



Problem

Solve advection-reaction-diffusion equations

qt +∇ · f(q) = D∇2q + G(q)

using a finite-volume scheme on logically Cartesian smooth surface
meshes.

I The operators ∇· and ∇2 are the surface divergence and
surface Laplacian, respectively, and

I q is a vector valued function, f (q) is a flux function, and D is
a diagonal matrix of constant diffusion coefficients
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Applications

I Diffusion on cell surfaces

I Biological pattern formation on realistic shapes (Turing
patterns, chemotaxis, and so on)

I Phase-field modeling on curvilinear grids (dendritic growth
problems)

I Navier-Stokes equations on the sphere for atmospheric
applications
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Disk and sphere grids

I Single logically Cartesian grid → disk

I Nearly uniform cell sizes
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Disk and sphere grids

I Single logically Cartesian grid → sphere

I Nearly uniform cell sizes
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Other grids

“Super-shape”
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Fractional step approach

To solve
qt +∇ · f(q) = D∇2q + G(q)

we alternate between these two steps :

(1) qt +∇ · f(q) = 0

(2) qt = D∇2q + G(q)

Take a full time step ∆t of each step. Treat each sub-problem
independently.

The focus of this talk is on describing a finite-volume scheme for
solving the parabolic step.
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Assumptions and requirements

Parabolic surface problem :

qt = ∇2q + G(q)

Parabolic scheme should couple well with our finite-volume
hyperbolic solvers.

I We assume that our surfaces can be described parametrically,

I We do not want to involve analytic metric terms, and

I Scheme should use cell-centered values.

We need a finite-volume discretization of the Laplace-Beltrami
operator on smooth quadrilateral surface meshes
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Previous work

I Finite element methods for triangular surface meshes (Dzuik,
Elliot, Polthier, Pinkall, Desbrun, Meyer, and others),

I Finite-volume schemes for diffusion equations on unstructured
grids in Euclidean space (Hermeline, Eymard, Gallouët,
Herbin, LePotier, Hubert, Boyer, Shaskov, Omnes, Z. Sheng,
G. Yuan, and so on)

I Approximating curvature by discretizing the Laplace-Beltrami
operator on quadrilateral meshes (G. Xu)
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Laplace-Beltrami operator

∇2 q =
1√
a

{
∂

∂ξ

√
a

(
a11∂q

∂ξ
+ a21∂q

∂η

)
+

∂

∂η

√
a

(
a21∂q

∂ξ
+ a22∂q

∂η

)}

with mapping

T (ξ, η) = [X (ξ, η),Y (ξ, η),Z (ξ, η)]T

and conjugate metric tensor

(
a11 a12

a21 a22

)
=

(
a11 a12

a21 a22

)−1

=

(
Tξ · Tξ Tξ · Tη
Tη · Tξ Tη · Tη

)−1

where a ≡ a11a22 − a12a21
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Computing fluxes at cell edges

θ

qi−1,j

qi,j

t̂i−1/2,j

ti−1/2,j

q̂i,j+1

q̂i,j

Flux :

∫

edge

dq

dn
ds ≈

√
a

(
a11 ∂q

∂ξ
+ a12 ∂q

∂η

)
∆η
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Computing fluxes at cell edges

T (ξ, η) = [X (ξ, η),Y (ξ, η),Z (ξ, η)]T

Flux :

∫

edge

dq

dn
ds ≈

√
a

(
a11 ∂q

∂ξ
+ a12 ∂q

∂η

)
∆η

a11 = Tξ · Tξ ≈ t · t = |t|2

a12 = a21 = Tξ · Tη ≈ t · t̂ = |t||̂t| cos(θ)

a22 = Tη · Tη ≈ t̂ · t̂ = |̂t|2
√

a = |Tξ × Tη| ≈ |t × t̂| = |t||̂t| sin(θ)

a11 = a22/a, a12 = a21 = −a12/a, a22 = a11/a
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Computing edge-based fluxes

∫ bxi,j+1

bxi,j

dq

dn
ds ≈ |t|

|̂t|
csc(θ)∆q − cot(θ) ∆q̂

θ

qi−1,j

qi,j

t̂i−1/2,j

ti−1/2,j

q̂i,j+1

q̂i,j
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Discrete Laplace-Beltrami operator

∇2q ≈ L(q) ≡ 1

Area

4∑

k=1

|tk |
|̂tk |

csc(θk)∆kq − cot(θk) ∆k q̂

I ∆kq is the difference in cell centered values of q

I ∆k q̂ is the difference of nodal values of q, and

I θk is the angle between tk and t̂k .
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Obtaining node values

I In regions where the mesh is smooth, node values may be
obtained by an arithmetic average of the cell-centered values.

I Along diagonal “seams”, we average using only cell centered
values on the diagonal.
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Physical boundaries for open surfaces

Impose boundary conditions to obtain edge values at boundary :

a q + b
dq

dn
= c

x̂1,j+1

x1,j+1 x2,j

x̂2,j+1

x̂2,j

x1,j

x̂1,j

x0,j

Obtain tridiagonal system for node values at the boundary.
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Equator conditions for the sphere

Match fluxes at the equator and obtain a tridiagonal system for
the node values at the equator
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Properties of the discrete operator

I 9-point stencil involving only cell-centers

I Requires only physical location of mesh cell centers and nodes

I No surface normals are required, since discretization is
intrinsic to the surface.

I Orthogonal and non-orthogonal grids both treated.

I On smooth or piecewise-smooth mappings, numerical
convergence tests show second order accuracy.
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Accuracy
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Superconvergence property

Discretization is not consistent
∥∥∥∥L(q)− 1

Area

∫
∇2q dS

∥∥∥∥ ∼ O(1)

so convergence of solutions to PDEs involving L(q) relies on a
superconvergence property often seen in FV schemes.

I This operator of little use in estimating curvatures of surfaces
meshes
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Connection to other schemes

∇2q ≈ L(q) ≡ 1

Area

4∑

k=1

|tk |
|̂tk |

csc(θk)∆kq − cot(θk) ∆k q̂

I L(q) reduces to familar stencils on Cartesian and polar grids,

I On a subset of flat Delaunay surface triangulations, L(q)
reduces to the “cotan” formula

I Closely related to “diamond-cell” and “Discrete Duality Finite
Volume” (DDFV) schemes for discretizing diffusion terms on
flat unstructured, polygonal meshes (Coudière, Hermeline,
Omnes, Komolevo, Herbin, Eymard, Gallouët...)
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Connection to the cotan formula

x6
x̂0

x1

x̂2

x̂3

x3

x̂4

x2

x4

x̂1

x5

x̂5

x̂6

∫

[x1,x2]

∂q

∂n
dL ≈ |x1 − x2|

|x̂0 − x̂2|
(q(x̂2)− q(x̂0)) (1)
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Connection to the cotan formula

x̂2

x̂1

βα
α

x̂3
β

x̂0

|x1 − x2|
|x̂0 − x̂2|

=
1

2
(cotα0,2 + cotβ0,2) (2)
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Connection to the cotan formula

x6
x̂0

x1

x̂2

x̂3

x3

x̂4

x2

x4

x̂1

x5

x̂5

x̂6

∫

D0

∇2q dA ≈
6∑

j=1

1

2
(cot(α0,j) + cot(β0,j)) (q(x̂j)− q(x̂0))
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Advection-Reaction-diffusion equations

qt +∇(u q) = ∇2q + f (q)

a q + b
dq

dn
= c

To handle time dependency,

I Runge-Kutta-Chebyschev (RKC) solver for explicit time
stepping of diffusion term (Sommeijer, Shampine, Verwer,
1997).

I Wave-propagation algorithms for advection terms (See
Clawpack, R. J. LeVeque).
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Chemotaxis in a petri-dish

∂u

∂t
= du∇2u − α∇ ·

((
∇v

(1 + v)2

)
u

)
+ ρu(δ − u)

∂v

∂t
= ∇2v + βu2 − uv .
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Turing patterns

∂u

∂t
= Dδ∇2u + αu

(
1− τ1v2

)
+ v(1− τ2u)

∂v

∂t
= δ∇2v + βv

(
1 +

ατ1
β

uv

)
+ u(γ + τ2v)
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Turing patterns
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Flow by mean curvature

Allen-Cahn equation

ut = D2∇2 + (u − u3)
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Spiral waves

Spiral waves using the Barkley model

ut = ∇2u +
1

ε
u(1− u)(u − v + b

a
)

vt = u − v , ε = 0.02, a = 0.75, b = 0.02
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More?

I D. Calhoun, C. Helzel, R. J. LeVeque, ”Logically rectangular
grids and finite volume methods for PDEs in circular and
spherical domains”. SIAM Review, 50-4 (2008).

I D. Calhoun, C. Helzel, ”A finite volume method for solving
parabolic equations on logically Cartesian curved surface
meshes”, (to appear, SISC).
http://www.amath.washington.edu/∼calhoun/Surfaces

Code is available!

Solving parabolic equations on surfaces


