A finite volume method for solving parabolic equations on curved surfaces

Donna Calhoun
Commissariat a l'Energie Atomique DEN/SMFE/DM2S, Centre de Saclay, France
Christiane Helzel
Ruhr-University Bochum, Germany

Workshop on Numerical Methods for PDEs on Surfaces Freiburg, Germany, Sept. 14-17, 2009

Problem

Solve advection-reaction-diffusion equations

$$
\mathbf{q}_{t}+\nabla \cdot \mathbf{f}(\mathbf{q})=D \nabla^{2} \mathbf{q}+\mathbf{G}(q)
$$

using a finite-volume scheme on logically Cartesian smooth surface meshes.

- The operators ∇. and ∇^{2} are the surface divergence and surface Laplacian, respectively, and
- q is a vector valued function, $f(q)$ is a flux function, and D is a diagonal matrix of constant diffusion coefficients

Applications

- Diffusion on cell surfaces
- Biological pattern formation on realistic shapes (Turing patterns, chemotaxis, and so on)
- Phase-field modeling on curvilinear grids (dendritic growth problems)
- Navier-Stokes equations on the sphere for atmospheric applications

Disk and sphere grids

- Single logically Cartesian grid \rightarrow disk
- Nearly uniform cell sizes

Disk and sphere grids

- Single logically Cartesian grid \rightarrow sphere
- Nearly uniform cell sizes

Other grids

Fractional step approach

To solve

$$
\mathbf{q}_{t}+\nabla \cdot \mathbf{f}(\mathbf{q})=D \nabla^{2} \mathbf{q}+\mathbf{G}(q)
$$

we alternate between these two steps :
(1) $\mathbf{q}_{t}+\nabla \cdot \mathbf{f}(\mathbf{q})=0$

$$
\begin{equation*}
\mathbf{q}_{t}=D \nabla^{2} \mathbf{q}+\mathbf{G}(\mathbf{q}) \tag{2}
\end{equation*}
$$

Take a full time step Δt of each step. Treat each sub-problem independently.

The focus of this talk is on describing a finite-volume scheme for solving the parabolic step.

Assumptions and requirements

Parabolic surface problem :

$$
\mathbf{q}_{t}=\nabla^{2} \mathbf{q}+\mathbf{G}(\mathbf{q})
$$

Parabolic scheme should couple well with our finite-volume hyperbolic solvers.

- We assume that our surfaces can be described parametrically,
- We do not want to involve analytic metric terms, and
- Scheme should use cell-centered values.

We need a finite-volume discretization of the Laplace-Beltrami operator on smooth quadrilateral surface meshes

Previous work

- Finite element methods for triangular surface meshes (Dzuik, Elliot, Polthier, Pinkall, Desbrun, Meyer, and others),
- Finite-volume schemes for diffusion equations on unstructured grids in Euclidean space (Hermeline, Eymard, Gallouët, Herbin, LePotier, Hubert, Boyer, Shaskov, Omnes, Z. Sheng, G. Yuan, and so on)
- Approximating curvature by discretizing the Laplace-Beltrami operator on quadrilateral meshes (G. Xu)

Laplace-Beltrami operator

$$
\nabla^{2} q=\frac{1}{\sqrt{a}}\left\{\frac{\partial}{\partial \xi} \sqrt{a}\left(a^{11} \frac{\partial q}{\partial \xi}+a^{21} \frac{\partial q}{\partial \eta}\right)+\frac{\partial}{\partial \eta} \sqrt{a}\left(a^{21} \frac{\partial q}{\partial \xi}+a^{22} \frac{\partial q}{\partial \eta}\right)\right\}
$$

with mapping

$$
T(\xi, \eta)=[X(\xi, \eta), Y(\xi, \eta), Z(\xi, \eta)]^{T}
$$

and conjugate metric tensor

$$
\left(\begin{array}{ll}
a^{11} & a^{12} \\
a^{21} & a^{22}
\end{array}\right)=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)^{-1}=\left(\begin{array}{cc}
T_{\xi} \cdot T_{\xi} & T_{\xi} \cdot T_{\eta} \\
T_{\eta} \cdot T_{\xi} & T_{\eta} \cdot T_{\eta}
\end{array}\right)^{-1}
$$

where $a \equiv a_{11} a_{22}-a_{12} a_{21}$

Computing fluxes at cell edges

Flux : $\int_{\text {edge }} \frac{d q}{d n} d s \approx \sqrt{a}\left(a^{11} \frac{\partial q}{\partial \xi}+a^{12} \frac{\partial q}{\partial \eta}\right) \Delta \eta$

Computing fluxes at cell edges

$$
T(\xi, \eta)=[X(\xi, \eta), Y(\xi, \eta), Z(\xi, \eta)]^{T}
$$

Flux : $\int_{\text {edge }} \frac{d q}{d n} d s \approx \sqrt{a}\left(a^{11} \frac{\partial q}{\partial \xi}+a^{12} \frac{\partial q}{\partial \eta}\right) \Delta \eta$

$$
\begin{aligned}
& a_{11}=T_{\xi} \cdot T_{\xi} \approx t \cdot t=|t|^{2} \\
& a_{12}=a_{21}=T_{\xi} \cdot T_{\eta} \approx t \cdot \widehat{t}=|t||\widehat{t}| \cos (\theta) \\
& a_{22}=T_{\eta} \cdot T_{\eta} \approx \hat{t} \cdot \widehat{t}=|\widehat{t}|^{2} \\
& \sqrt{a}=\left|T_{\xi} \times T_{\eta}\right| \approx|t \times \widehat{t}|=|t||\widehat{t}| \sin (\theta) \\
& a^{11}=a_{22} / a, \quad a^{12}=a^{21}=-a_{12} / a, \quad a^{22}=a_{11} / a
\end{aligned}
$$

Computing edge-based fluxes

$$
\int_{\widehat{x}_{i, j}}^{\widehat{x}_{i, j+1}} \frac{d q}{d n} d s \approx \frac{|t|}{|\widehat{t}|} \csc (\theta) \Delta q-\cot (\theta) \Delta \widehat{q}
$$

Discrete Laplace-Beltrami operator

$$
\nabla^{2} q \approx L(q) \equiv \frac{1}{\text { Area }} \sum_{k=1}^{4} \frac{\left|t_{k}\right|}{\left|\widehat{t}_{k}\right|} \csc \left(\theta_{k}\right) \Delta_{k} q-\cot \left(\theta_{k}\right) \Delta_{k} \widehat{q}
$$

- $\Delta_{k} q$ is the difference in cell centered values of q
- $\Delta_{k} \widehat{q}$ is the difference of nodal values of q, and
- θ_{k} is the angle between t_{k} and \hat{t}_{k}.

Obtaining node values

- In regions where the mesh is smooth, node values may be obtained by an arithmetic average of the cell-centered values.
- Along diagonal "seams", we average using only cell centered values on the diagonal.

Physical boundaries for open surfaces

Impose boundary conditions to obtain edge values at boundary :

$$
a q+b \frac{d q}{d n}=c
$$

Obtain tridiagonal system for node values at the boundary.

Equator conditions for the sphere

Match fluxes at the equator and obtain a tridiagonal system for the node values at the equator

Properties of the discrete operator

- 9-point stencil involving only cell-centers
- Requires only physical location of mesh cell centers and nodes
- No surface normals are required, since discretization is intrinsic to the surface.
- Orthogonal and non-orthogonal grids both treated.
- On smooth or piecewise-smooth mappings, numerical convergence tests show second order accuracy.

Accuracy

Solving parabolic equations on surfaces

Superconvergence property

Discretization is not consistent

$$
\left\|L(q)-\frac{1}{\text { Area }} \int \nabla^{2} q d S\right\| \sim O(1)
$$

so convergence of solutions to PDEs involving $L(q)$ relies on a superconvergence property often seen in FV schemes.

- This operator of little use in estimating curvatures of surfaces meshes

Connection to other schemes

$$
\nabla^{2} q \approx L(q) \equiv \frac{1}{\text { Area }} \sum_{k=1}^{4} \frac{\left|t_{k}\right|}{\left|\hat{t}_{k}\right|} \csc \left(\theta_{k}\right) \Delta_{k} q-\cot \left(\theta_{k}\right) \Delta_{k} \widehat{q}
$$

- $L(q)$ reduces to familar stencils on Cartesian and polar grids,
- On a subset of flat Delaunay surface triangulations, $L(q)$ reduces to the "cotan" formula
- Closely related to "diamond-cell" and "Discrete Duality Finite Volume" (DDFV) schemes for discretizing diffusion terms on flat unstructured, polygonal meshes (Coudière, Hermeline, Omnes, Komolevo, Herbin, Eymard, Gallouët...)

Connection to the cotan formula

$$
\begin{equation*}
\int_{\left[x_{1}, x_{2}\right]} \frac{\partial q}{\partial n} d L \approx \frac{\left|x_{1}-x_{2}\right|}{\left|\widehat{x}_{0}-\widehat{x}_{2}\right|}\left(q\left(\widehat{x}_{2}\right)-q\left(\widehat{x}_{0}\right)\right) \tag{1}
\end{equation*}
$$

Connection to the cotan formula

$$
\begin{equation*}
\frac{\left|x_{1}-x_{2}\right|}{\left|\widehat{x}_{0}-\widehat{x}_{2}\right|}=\frac{1}{2}\left(\cot \alpha_{0,2}+\cot \beta_{0,2}\right) \tag{2}
\end{equation*}
$$

Connection to the cotan formula

$$
\int_{D_{0}} \nabla^{2} q d A \approx \sum_{j=1}^{6} \frac{1}{2}\left(\cot \left(\alpha_{0, j}\right)+\cot \left(\beta_{0, j}\right)\right)\left(q\left(\widehat{x}_{j}\right)-q\left(\widehat{x}_{0}\right)\right)
$$

Advection-Reaction-diffusion equations

$$
\begin{gathered}
q_{t}+\nabla(\mathbf{u} q)=\nabla^{2} q+f(q) \\
a q+b \frac{d q}{d n}=c
\end{gathered}
$$

To handle time dependency,

- Runge-Kutta-Chebyschev (RKC) solver for explicit time stepping of diffusion term (Sommeijer, Shampine, Verwer, 1997).
- Wave-propagation algorithms for advection terms (See Clawpack, R. J. LeVeque).

Chemotaxis in a petri-dish

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=d_{u} \nabla^{2} u-\alpha \nabla \cdot\left(\left(\frac{\nabla v}{(1+v)^{2}}\right) u\right)+\rho u(\delta-u) \\
& \frac{\partial v}{\partial t}=\nabla^{2} v+\beta u^{2}-u v .
\end{aligned}
$$

Turing patterns

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=D \delta \nabla^{2} u+\alpha u\left(1-\tau_{1} v^{2}\right)+v\left(1-\tau_{2} u\right) \\
& \frac{\partial v}{\partial t}=\delta \nabla^{2} v+\beta v\left(1+\frac{\alpha \tau_{1}}{\beta} u v\right)+u\left(\gamma+\tau_{2} v\right)
\end{aligned}
$$

Turing patterns

Solving parabolic equations on surfaces

Flow by mean curvature

Allen-Cahn equation

$$
u_{t}=D^{2} \nabla^{2}+\left(u-u^{3}\right)
$$

Spiral waves

Spiral waves using the Barkley model

$$
\begin{aligned}
& u_{t}=\nabla^{2} u+\frac{1}{\epsilon} u(1-u)\left(u-\frac{v+b}{a}\right) \\
& v_{t}=u-v, \quad \epsilon=0.02, a=0.75, b=0.02
\end{aligned}
$$

More?

- D. Calhoun, C. Helzel, R. J. LeVeque, "Logically rectangular grids and finite volume methods for PDEs in circular and spherical domains". SIAM Review, 50-4 (2008).
- D. Calhoun, C. Helzel, " A finite volume method for solving parabolic equations on logically Cartesian curved surface meshes", (to appear, SISC). http://www.amath.washington.edu/~calhoun/Surfaces

Code is available!

