A finite volume method for solving parabolic equations on curved surfaces

Donna Calhoun

Commissariat a l'Energie Atomique DEN/SMFE/DM2S, Centre de Saclay, France

Christiane Helzel

Ruhr-University Bochum, Germany

Workshop on Numerical Methods for PDEs on Surfaces Freiburg, Germany, Sept. 14-17, 2009 Solve advection-reaction-diffusion equations

$$\mathbf{q}_t + \nabla \cdot \mathbf{f}(\mathbf{q}) = D\nabla^2 \mathbf{q} + \mathbf{G}(q)$$

using a finite-volume scheme on logically Cartesian smooth surface meshes.

- ► The operators ∇· and ∇² are the surface divergence and surface Laplacian, respectively, and
- q is a vector valued function, f(q) is a flux function, and D is a diagonal matrix of constant diffusion coefficients

向下 イヨト イヨト

- Diffusion on cell surfaces
- Biological pattern formation on realistic shapes (Turing patterns, chemotaxis, and so on)
- Phase-field modeling on curvilinear grids (dendritic growth problems)
- Navier-Stokes equations on the sphere for atmospheric applications

白 と く ヨ と く ヨ と

Disk and sphere grids

- \blacktriangleright Single logically Cartesian grid \rightarrow disk
- Nearly uniform cell sizes

周▶ 《 ≧ ▶

∃ ⊳

Disk and sphere grids

- Single logically Cartesian grid \rightarrow sphere
- Nearly uniform cell sizes

A ■

Other grids

"Super-shape"

Solving parabolic equations on surfaces

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Э

Fractional step approach

To solve

$$\mathbf{q}_t + \nabla \cdot \mathbf{f}(\mathbf{q}) = D\nabla^2 \mathbf{q} + \mathbf{G}(q)$$

we alternate between these two steps :

(1)
$$\mathbf{q}_t + \nabla \cdot \mathbf{f}(\mathbf{q}) = 0$$

(2) $\mathbf{q}_t = D\nabla^2 \mathbf{q} + \mathbf{G}(\mathbf{q})$

Take a full time step Δt of each step. Treat each sub-problem independently.

The focus of this talk is on describing a finite-volume scheme for solving the parabolic step.

(4) (5) (4) (5) (4)

Parabolic surface problem :

$$\mathbf{q}_t = \nabla^2 \mathbf{q} + \mathbf{G}(\mathbf{q})$$

Parabolic scheme should couple well with our finite-volume hyperbolic solvers.

- ▶ We assume that our surfaces can be described parametrically,
- ▶ We do not want to involve analytic metric terms, and
- Scheme should use cell-centered values.

We need a finite-volume discretization of the Laplace-Beltrami operator on smooth quadrilateral surface meshes

A B K A B K

- Finite element methods for triangular surface meshes (Dzuik, Elliot, Polthier, Pinkall, Desbrun, Meyer, and others),
- Finite-volume schemes for diffusion equations on unstructured grids in Euclidean space (Hermeline, Eymard, Gallouët, Herbin, LePotier, Hubert, Boyer, Shaskov, Omnes, Z. Sheng, G. Yuan, and so on)
- Approximating curvature by discretizing the Laplace-Beltrami operator on quadrilateral meshes (G. Xu)

伺 とう ヨン うちょう

Laplace-Beltrami operator

$$\nabla^2 q = \frac{1}{\sqrt{a}} \left\{ \frac{\partial}{\partial \xi} \sqrt{a} \left(a^{11} \frac{\partial q}{\partial \xi} + a^{21} \frac{\partial q}{\partial \eta} \right) + \frac{\partial}{\partial \eta} \sqrt{a} \left(a^{21} \frac{\partial q}{\partial \xi} + a^{22} \frac{\partial q}{\partial \eta} \right) \right\}$$

with mapping

$$T(\xi,\eta) = [X(\xi,\eta), Y(\xi,\eta), Z(\xi,\eta)]^{T}$$

and conjugate metric tensor

$$\begin{pmatrix} a^{11} & a^{12} \\ a^{21} & a^{22} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}^{-1} = \begin{pmatrix} T_{\xi} \cdot T_{\xi} & T_{\xi} \cdot T_{\eta} \\ T_{\eta} \cdot T_{\xi} & T_{\eta} \cdot T_{\eta} \end{pmatrix}^{-1}$$

where $a \equiv a_{11}a_{22} - a_{12}a_{21}$

Computing fluxes at cell edges

Flux :
$$\int_{\text{edge}} \frac{dq}{dn} \, ds \approx \sqrt{a} \left(a^{11} \frac{\partial q}{\partial \xi} + a^{12} \frac{\partial q}{\partial \eta} \right) \Delta \eta$$

Solving parabolic equations on surfaces

- 4 同 ト - 4 三 ト

- ∢ ≣ ▶

Computing fluxes at cell edges

TIC

$$T(\xi,\eta) = [X(\xi,\eta), Y(\xi,\eta), Z(\xi,\eta)]^{T}$$

Flux : $\int_{edge} \frac{dq}{dn} ds \approx \sqrt{a} \left(a^{11} \frac{\partial q}{\partial \xi} + a^{12} \frac{\partial q}{\partial \eta} \right) \Delta \eta$

$$\begin{aligned} a_{11} &= T_{\xi} \cdot T_{\xi} &\approx t \cdot t = |t|^{2} \\ a_{12} &= a_{21} = T_{\xi} \cdot T_{\eta} &\approx t \cdot \hat{t} = |t||\hat{t}|\cos(\theta) \\ a_{22} &= T_{\eta} \cdot T_{\eta} &\approx \hat{t} \cdot \hat{t} = |\hat{t}|^{2} \\ \sqrt{a} &= |T_{\xi} \times T_{\eta}| &\approx |t \times \hat{t}| = |t||\hat{t}|\sin(\theta) \\ a^{11} &= a_{22}/a, \qquad a^{12} = a^{21} = -a_{12}/a, \qquad a^{22} = a_{11}/a \end{aligned}$$

・ロト ・回ト ・ヨト ・ヨト

Computing edge-based fluxes

Solving parabolic equations on surfaces

・ 回 と ・ ヨ と ・ ヨ と

Discrete Laplace-Beltrami operator

$$\nabla^2 q \approx \mathcal{L}(q) \equiv \frac{1}{\text{Area}} \sum_{k=1}^{4} \frac{|t_k|}{|\hat{t}_k|} \csc(\theta_k) \Delta_k q - \cot(\theta_k) \Delta_k \hat{q}$$

- $\Delta_k q$ is the difference in cell centered values of q
- $\Delta_k \hat{q}$ is the difference of nodal values of q, and
- θ_k is the angle between t_k and \hat{t}_k .

Obtaining node values

- In regions where the mesh is smooth, node values may be obtained by an arithmetic average of the cell-centered values.
- Along diagonal "seams", we average using only cell centered values on the diagonal.

• 3 > 1

Physical boundaries for open surfaces

Impose boundary conditions to obtain edge values at boundary :

Obtain tridiagonal system for node values at the boundary.

Equator conditions for the sphere

Match fluxes at the equator and obtain a tridiagonal system for the node values at the equator

- 9-point stencil involving only cell-centers
- Requires only physical location of mesh cell centers and nodes
- No surface normals are required, since discretization is intrinsic to the surface.
- Orthogonal and non-orthogonal grids both treated.
- On smooth or piecewise-smooth mappings, numerical convergence tests show second order accuracy.

Accuracy

Solving parabolic equations on surfaces

・ロト ・回ト ・ヨト ・ヨト

Discretization is not consistent

$$\left\| L(q) - rac{1}{\operatorname{Area}} \int
abla^2 q \ dS
ight\| \ \sim \ O(1)$$

so convergence of solutions to PDEs involving L(q) relies on a superconvergence property often seen in FV schemes.

 This operator of little use in estimating curvatures of surfaces meshes

向下 イヨト イヨト

Connection to other schemes

$$abla^2 q pprox {\it L}(q) \equiv rac{1}{{\sf Area}} \, \sum_{k=1}^4 \, rac{|t_k|}{|\widehat{t}_k|} \, \csc(heta_k) \Delta_k q - \cot(heta_k) \, \Delta_k \widehat{q}$$

- L(q) reduces to familar stencils on Cartesian and polar grids,
- On a subset of flat Delaunay surface triangulations, L(q) reduces to the "cotan" formula
- Closely related to "diamond-cell" and "Discrete Duality Finite Volume" (DDFV) schemes for discretizing diffusion terms on flat unstructured, polygonal meshes (Coudière, Hermeline, Omnes, Komolevo, Herbin, Eymard, Gallouët...)

(日本) (日本) (日本)

Connection to the cotan formula

$$\int_{[x_1,x_2]} \frac{\partial q}{\partial n} \, dL \approx \frac{|x_1-x_2|}{|\widehat{x}_0-\widehat{x}_2|} (q(\widehat{x}_2)-q(\widehat{x}_0)) \tag{1}$$

Solving parabolic equations on surfaces

・ロン ・回 と ・ヨン ・ヨン

Э

Connection to the cotan formula

$$\frac{|x_1 - x_2|}{|\hat{x}_0 - \hat{x}_2|} = \frac{1}{2} \left(\cot \alpha_{0,2} + \cot \beta_{0,2} \right)$$
(2)

Solving parabolic equations on surfaces

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

Э

Connection to the cotan formula

$$\int_{D_0} \nabla^2 q \ dA \ \approx \ \sum_{j=1}^6 \frac{1}{2} \left(\cot(\alpha_{0,j}) + \cot(\beta_{0,j}) \right) \left(q(\widehat{x}_j) - q(\widehat{x}_0) \right)$$

Solving parabolic equations on surfaces

▲ 문 ▶ 문 문

Advection-Reaction-diffusion equations

$$q_t +
abla (\mathbf{u} \ q) =
abla^2 q + f(q)$$

 $a \ q + b \ rac{dq}{dn} = c$

To handle time dependency,

- Runge-Kutta-Chebyschev (RKC) solver for explicit time stepping of diffusion term (Sommeijer, Shampine, Verwer, 1997).
- Wave-propagation algorithms for advection terms (See CLAWPACK, R. J. LeVeque).

Chemotaxis in a petri-dish

$$\begin{aligned} \frac{\partial u}{\partial t} &= d_u \nabla^2 u - \alpha \nabla \cdot \left(\left(\frac{\nabla v}{(1+v)^2} \right) u \right) + \rho u (\delta - u) \\ \frac{\partial v}{\partial t} &= \nabla^2 v + \beta u^2 - u v. \end{aligned}$$

Solving parabolic equations on surfaces

周▶ 《 ≧ ▶

< ∃⇒

$$\frac{\partial u}{\partial t} = D\delta\nabla^2 u + \alpha u \left(1 - \tau_1 v^2\right) + v(1 - \tau_2 u)$$
$$\frac{\partial v}{\partial t} = \delta\nabla^2 v + \beta v \left(1 + \frac{\alpha \tau_1}{\beta} uv\right) + u(\gamma + \tau_2 v)$$

Solving parabolic equations on surfaces

ヘロン 人間 とくほど 人間 と

Flow by mean curvature

Allen-Cahn equation

$$u_t = D^2 \nabla^2 + (u - u^3)$$

Solving parabolic equations on surfaces

▲ 同 ▶ ▲ 臣

э.

Spiral waves using the Barkley model

$$u_t = \nabla^2 u + \frac{1}{\epsilon} u(1-u)(u - \frac{v+b}{a})$$

$$v_t = u - v, \quad \epsilon = 0.02, \ a = 0.75, \ b = 0.02$$

周▶ 《 ≧ ▶

-≣->

More?

- D. Calhoun, C. Helzel, R. J. LeVeque, "Logically rectangular grids and finite volume methods for PDEs in circular and spherical domains". SIAM Review, 50-4 (2008).
- D. Calhoun, C. Helzel, "A finite volume method for solving parabolic equations on logically Cartesian curved surface meshes", (to appear, SISC). http://www.amath.washington.edu/~calhoun/Surfaces

Code is available!

ヨット イヨット イヨッ