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Where is Boise?

Seattle

*2012 Electoral map (:-((
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More about Idaho

Albertsons

Boise Cascade
Engineered Wood Products
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Threats from dam failures

* According to a U.S.Army Corps of Engineers assessment, “‘Mosul Dam is the
most dangerous dam in the world.” (New Yorker, 1/2/2017)

* Failure could results in million and half people losing their lives or becoming
homeless.

If the dam ruptured, it would likely cause a
catastrophe of Biblical proportions, loosing a
wave as high as a hundred feet that would roll

down the Tigris, swallowing everything in its path st
for more than a hundred miles. Large parts of
Mosul would be submerged in less than three
hours. Along the river banks, towns and cities
containing the heart of Iraq’s population would be
flooded; in four days, a way as high as sixteen
feet would crash into Baghdad, a city of six
million people. “If there 1s a breach in the dam,
there will be no warning,” Awash [ American-Iraqi
civil engineer, advisor on the dam]. “It’s a
nuclear bomb with an predictable fuse”. -- New
Yorker article.
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Dam Failures - US

* American Society of Civil Engineers gives the US a grade D for
infrastructure -- nearly 20% of US dams have high hazard potential.

Oroville Dam, Oroville, CA. in February 2017, 188,000

i Damage in the Oroville Dam Spillway (Dale
Residents were evacuated downstream 8 pillway (

Kolke / California Department of Water
Resources - California Department of Water
Resources)
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What can simulations do?

* Create flood maps for local communities
* Communicate threats to lawmakers in visually impactful way

* Potentially aid in design and location of future dams

But, do we need to model 3d equations, complete with evolving free
boundary and free surface!?

Donna Calhoun (Boise State Univ.) Dusseldorf, June 7, 2017



Basic idea

Embed the evolving flood into a background Cartesian mesh.
* “capture” rather than “track” the evolving flooding front

e Use finite volume scheme with
suitable Riemann solver that
can handle the wet/dry states.

* Handle topography to model
realistic flow situations.

* Two dimensional flow makes
calculations reasonably
Inexpensive

Donna Calhoun (Boise State Univ.) Dusseldorf, June 7, 2017



GeoClaw

GeoClaw is a depth-averaged (shallow water wave equations) code based
on the finite volume, second order Cartesian grid methods in Clawpack

* Jointly developed by USGS, Univ. of Washington, NYU and Columbia
researchers (D. George, R. J. LeVeque, M. Berger, K. Mandli)
* Based on the wave propagation algorithms in Clawpack (R. ]. LeVeque)

34 - - ' :
— — 140 141 142 143 144 145

Fukushima, Japan 2010
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http://lwww.geoclaw.org
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Depth-averaged models

Alternative to fully 3d flow simulations are the two-dimensional shallow
water wave equations (SWE).

- Assume that the wave length of the flow is long relative to the depth of
the flow
+ Commonly used in modeling tsunamis

* More recently being widely used in modeling landslides, debris flows,
avalanches, storm surges, and so on
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2d SWE (GeoClaw)
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D. L. George, “Adaptive finite volume methods with well-balanced Riemann solvers for modeling floods in
rugged terrain: Application to the Malpasset dam-break flood (France, 1959)”, Int. J. Numer. Methods. Fluids,
66 (2011), pp. 1000-1018.
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GeoClaw

GeoClaw overcomes several technical challenges

* Riemann solver robustly handles wet and dry states and discontinuities in
topography - no need to track the evolving flood boundary.

* Seamlessly handles reading and interpolation of multiple, possibly overlapping,
topography files for given computational domain

* Well-balanced scheme maintains steady states in presence of topography
* Numerical gauges allow for easy comparison with observational data

* Uses OpenMP (shared memory) parallelism

Use of adaptive mesh refinement (AMR) means that resolution is allocated only
where needed (dry land is resolved only at the coarsest levels)

Donna Calhoun (Boise State Univ.) Dusseldorf, June 7, 2017
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Adaptive Mesh Refinement (AMR)

Quadtree/Octree based AMR

Quad-tree approach
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p4est (U. Bonn), PARAMESH (U. Chicago), ForestClaw, Gerris (Paris V), Racoon Il (U. Bochum),
RAMSES (U Zurich), Nirvana (Potsdam), “Building Cubes” (Tohoku)
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Brief history of AMR

Refinement based on quadtree and octree grid layouts

* 2000 : P MacNiece, K. Olson et al, “PARAMESH: A parallel adaptive mesh refinement
community toolkit” (FLASH code based on PARAMESH)

* 2002 :R.Tessyier,"Cosmology Hydrodynamics with adaptive mesh refinement. A new high
resolution code called RAMSES” (Lausanne, Switzerland)

e 2003 :S.Popinet,“Gerris:A tree-based adaptive solver for the incompressible Euler
equations in complex geometries” (Paris |V, France)

e 2004 :U. Ziegler," An ADI-based adaptive mesh Poisson solver for the MHD code
NIRVANA” (Potsdam, Germany)

e 2005 :]). Dreher and R. Grauer,”"Racoon:A parallel mesh-adaptive framework for hyperbolic
conservation laws” (Bochum, Germany)

e 2011 :C.Burstedde, L. Wilcox, O. Ghattas, “p4est: Scalable Algorithms for Parallel Adaptive
Mesh Refinement on Forests of Octrees” (Univ. Texas)

e 2011 : K. Komatsu,T.Soga et al “Parallel processing of the Building-Cube Method on a
GPU platform” (Tohoku, Japan)

2000 +—m-w-—-—-—-—————"——P present
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ForestClaw Project

A parallel, adaptive library for logically Cartesian, mapped, multi-block domains

Features of ForestClaw include :

* Uses the highly scalable p4est dynamic grid management library (C.
Burstedde, Univ. of Bonn, Germany) Gordon Bell Finalist, 201 3; used in
2015 Gordon Bell prize.

* Each leaf of the quadtree contains a fixed, uniform grid,

e Optional multi-rate time stepping strategy,

 Has mapped, multi-block capabilities, (cubed-sphere, for example)
to allow for flexibility in physical domains,

* Modular design gives user flexibility in extending ForestClaw with
Cartesian grid based solvers and packages.

* Uses essentially the same algorithmic components as patch-based AMR
Thanks to NSF for supporting this work

www. forestclaw.org
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http://www.forestclaw.org

ForestClaw adaptivity

q(1) at time 0.0000

Each quadrant is a single logically grid,
designed for finite volume or finite
difference solvers.

Regridding, connectivity done using p4est

Donna Calhoun (Boise State Univ.) Dusseldorf, June 7, 2017



Filling ghost cells

Step | :Averaging or copying to coarse ghost
regions

Step 2 : Interpolation to fine ghost
regions, using coarse grid ghost regions

Each grid (or “leaf”, in p4est terminology) has one of more layers of ghost cells
used for communication between grids

Donna Calhoun (Boise State Univ.) Dusseldorf, June 7, 2017



Computational performance
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ForestClaw - Parallelism

O -o1&P

Remote ghost
patch (Proc 2)

Fine grid corner ghost cells at corners

p4est : Load balancing using a space
where 3 or more processors meet

filling curve

D. Calhoun and C. Burstedde, “ForestClaw :A parallel algorithm for patch-based adaptive mesh
refinement on a forest of quadtrees”, (submitted), 201 7. (arXiv:1703.03116)
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Extending ForestClaw
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Seattle Teton Dam Reservoir (Eastern Idaho)

San Fran

Donna Calhoun (Boise State Univ.) Dusseldorf, June 7, 2017



Teton Dam Failure, June 5, 1976

| | people died; $2bn in damage

Donna Calhoun (Boise State Univ.) Dusseldorf, June 7, 2017



Teton Dam Failure, June 5, 1976

8 minutes before dam failure

Donna Calhoun (Boise State Univ.) Dusseldorf, June 7, 2017



Teton Dam Failure, June 5, 1976

~11:52 AM, June 5, 1976

Donna Calhoun (Boise State Univ.) Dusseldorf, June 7,



Teton Dam Failure, June 5, 1976

By WaterArchives.org from Sacramento, California, USA - [IDAHO-L-0010] Teton Dam Flood - Newdale, CC BY-SA 2.0,

Donna Calhoun (Boise State Univ.) Dusseldorf, June 7, 2017



Historical Data

Table 2
Teton Dam Failure
Summary Flood Data
(Primary source: USGS Open-File Report 77-765)
Location Miles | Flood Flood Arrival Peak Flow (cubic | Flood Description
from Arrival Travel Time (time | feet per second)
Dam Time from embankment
breach)
Teton Canyon | 2.5 12:05 p.m. 8 minutes 2,300,000 50 to 75 ft wall-of-
June 5 water
Near mouth of | 5.0 12:20 p.m. 23 minutes
Teton Canyon
Wilford 8.4 120 of the 154
homes “completely
swept away”
Town of Teton | 8.8 12:30 p.m. 33 minutes 1,060,000 Only tiny fraction
flooded
Sugar City 12.3 About 1.5 hours 15-foot wall-of-
1:30 p.m. water
Rexburg 15.3 About 2.5 hours 6 to 8 feet in a few
2:30 p.m. minutes
Roberts 43.1 9:00 p.m. 9 hours
Idaho Falls 63.0 I am. 13 hours 90,500
June 6
Shelley 71.2 2 am. 14 hours 67,300 Peak 21 hours after
arrival. 0.5 feet per
hour average rate of
rise.

W. Graham, “Reclamation : Managing water in the west, The Teton Dam Failure - An effective warning and
evacuation”, U.S. Department of the Interior, Bureau of Reclamation, Denver Colorado

Dusseldorf, June 7, 2017
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Inundation map

Figure 2 — Teton Dam Failure Inundation Map from Teton Dam to Idaho Falls

W. Graham, “Reclamation : Managing water in the west, The Teton Dam Failure - An effective warning and
evacuation”, U.S. Department of the Interior, Bureau of Reclamation, Denver Colorado

Donna Calhoun (Boise State Univ.) Dusseldorf, June 7, 2017



Simulations using ForestClaw/Geo

Simulation details :

* Run at 10m effective resolution (8192 x 4096)

* 12 hours of simulation time

* Manning coefficient set to 0.025

* Results compared with historical flood boundaries and arrival times
* No detailed modeling of the dam failure itself

Numerical parameters

* 7/ levels of refinement
* standard ‘feature-based’ refinement based on wave speeds and depth
* 2 blocks or quad-trees used to grid the domain

Platform
22 Broadwell nodes : Dual Intel Xeon E5-2680 v4 14 core 2.4GHz

Donna Calhoun (Boise State Univ.) Dusseldorf, June 7, 2017



Teton Dam Failure, June 5, 1976
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Simulation results
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Simulation results
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Simulation results
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Simulation results
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Simulation results
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Simulation results

4 St Anthony
"Parker )

&
Teton mew»:lale'

r

| Roberts : 8:30PM &

[&]

'

i ’@u;;ar City

1

Kellers |sland
e

‘Roberts

T Butlerisland 7

©2016 Google(ﬁirie :

[ | — " __mi QL_ iN ——————

Roberts  [43.1 [9:00pm.  |[9hows | |
daho Falls os0 |

Donna Calhoun (Boise State Univ.) Dusseldorf, June 7, 2017




Simulation results
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Adaptive Mesh
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Adaptive Mesh
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Parallel/AMR Efficiency

~ 10m resolution (8192 x 4096)

Procs 28 56 112 224
6.5 hours vs. Wall (s) 12510.6 6626.7 3499.7 < 1872.9 >
30 minutes Speed-up 1.00 1.89 3.56 6.74 12.60
Efficiency 100% 94% 89% 84% 79%
Grids per
processor 670 334 167 83 41
Ghost Ghost Speed- Par.

Procs Wall Advance (%) (%) (%) Regrid (%)

Comm fill up eff.

14 23601.9 17706.4 75% 4500.4 19% 1343.3 6% 285 0% 1.0 100%

28 12510.6 8863.0 71% 2838.0 23% 7724 6% 17.0 0% 1.9 94%
56 @ 6626.7 4453.7  67% 1714.5 26% 432.6 7% 0.1 0% 3.6 89%
112  34990.7 2220.0 64% 1002.8 20% 248.1 7% 5.3 0% 6.7 84%

224 1872.9 1114.1  59% 602.8 32% 138.6 7% 3.3 0% 12.6 79 %

Donna Calhoun (Boise State Univ.) Dusseldorf, June 7, 2017



Conclusions and Future plans

Geo/ForestClaw arrival times agree well with historical data.

What is left to do!?
* Better modeling of dam failure to get initial outflow correct
* Use numerical “gauges” to compare with historical depth records

* Multi-rate time stepping (tricky with SWE, since wave speed depends on
depth)

* Other dam failure scenarios, i.e. Malpassat, France.

Future?

* Collaboration with Univ. of Washington to develop tool to allow easier
simulation of flooding scenarios (K. Huntingon, FloodMap)

Interested students are always welcome!

Donna Calhoun (Boise State Univ.) Dusseldorf, June 7, 2017



Teton Dam Failure, June 5, 1976

Ram Sampath, Centroid
Lab, Los Angeles, CA

http://neutrinodynamics.com//portfolio-riverflood.html
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ForestClaw - Parallelism

O -o1&P

Remote ghost
patch (Proc 2)

Fine grid corner ghost cells at corners

p4est : Load balancing using a space
where 3 or more processors meet

filling curve

D. Calhoun and C. Burstedde, “ForestClaw :A parallel algorithm for patch-based adaptive mesh
refinement on a forest of quadtrees”, (submitted), 201 7. (arXiv:1703.03116)
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Parallel scaling (BlueGene/Q)

Torus (Juqueen) : Grids processed per time (32x32; replicated)
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Processor count

Scalar advection on replicated domain 90% (or better) efficiency at 16K cores

using 32x32 patches

Weak scaling
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Parallel scaling (BlueGene/Q)

Fraction time in advance/AMR (32'x'3'2';' 'adap"civ'e)' -
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Strong scaling for single grid 80% AMR efficiency at approx. 100 grids per core

D. Duplyakin , J. Brown, D. Calhoun, “Applying Active Learning to Adaptive Mesh Refinement
Simulations™, (submitted) IEEE (2017)

Donna Calhoun (Boise State Univ.) Dusseldorf, June 7, 2017



